Ce-promoted Ni-NiO small ensemble constrained in an MgO catalyst for efficient hydrogen production through NH3 decomposition

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-05-08 DOI:10.1016/j.checat.2024.101000
Zhaohua Wang, Xuan Tang, Maolin Wang, Yao Xu, Xuetao Qin, Lihui Zhou, Mi Peng, Sheng Dai, Ding Ma
{"title":"Ce-promoted Ni-NiO small ensemble constrained in an MgO catalyst for efficient hydrogen production through NH3 decomposition","authors":"Zhaohua Wang, Xuan Tang, Maolin Wang, Yao Xu, Xuetao Qin, Lihui Zhou, Mi Peng, Sheng Dai, Ding Ma","doi":"10.1016/j.checat.2024.101000","DOIUrl":null,"url":null,"abstract":"<p>Ammonia is recognized for its potential in hydrogen storage and transportation. Among methods for hydrogen production from ammonia, catalytic decomposition stands out, and developing economical alternatives to noble metal catalysts like ruthenium (Ru) is crucial. Here, we report an exsolution strategy to obtain a size-constrained Ni<sup>0</sup>-NiO small ensemble on MgO that outperforms bare Ni single atoms and particles in ammonia decomposition. Adding Ce to the NiMg catalyst significantly enhances activity, doubling the hydrogen production rate to 92 mmol<sub>H2</sub> g<sub>cat</sub><sup>−1</sup> min<sup>−1</sup> at 550°C, surpassing most Ni-based catalysts. Characterization reveals the role of cerium in forming active Ni<sup>0</sup>-NiO ensembles by occupying specific sites on MgO. Cerium (Ce) also affects hydrogen and ammonia adsorption and alters reaction pathways. Our work highlights the structure control of transition metal sites and the promotion mechanism of rare-earth elements for ammonia conversion and hydrogen production reaction.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia is recognized for its potential in hydrogen storage and transportation. Among methods for hydrogen production from ammonia, catalytic decomposition stands out, and developing economical alternatives to noble metal catalysts like ruthenium (Ru) is crucial. Here, we report an exsolution strategy to obtain a size-constrained Ni0-NiO small ensemble on MgO that outperforms bare Ni single atoms and particles in ammonia decomposition. Adding Ce to the NiMg catalyst significantly enhances activity, doubling the hydrogen production rate to 92 mmolH2 gcat−1 min−1 at 550°C, surpassing most Ni-based catalysts. Characterization reveals the role of cerium in forming active Ni0-NiO ensembles by occupying specific sites on MgO. Cerium (Ce) also affects hydrogen and ammonia adsorption and alters reaction pathways. Our work highlights the structure control of transition metal sites and the promotion mechanism of rare-earth elements for ammonia conversion and hydrogen production reaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化镁催化剂中的铈促进 Ni-NiO 小集合,通过分解 NH3 高效制氢
氨在氢气储存和运输方面的潜力已得到公认。在利用氨气制氢的方法中,催化分解法脱颖而出,而开发钌(Ru)等贵金属催化剂的经济替代品至关重要。在此,我们报告了一种在氧化镁上获得尺寸受限的 Ni0-NiO 小集合体的外溶解策略,这种小集合体在氨分解中的性能优于裸 Ni 单原子和颗粒。在镍镁催化剂中加入铈可显著提高催化剂的活性,在 550°C 时可将制氢率提高一倍,达到 92 mmolH2 gcat-1 min-1,超过了大多数镍基催化剂。表征结果表明,铈占据了氧化镁上的特定位点,在形成活性氧化镍-氧化钛组合方面发挥了作用。铈(Ce)还会影响氢和氨的吸附,并改变反应路径。我们的工作突出了过渡金属位点的结构控制以及稀土元素对氨转化和制氢反应的促进机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
An electrocatalytic oxidative approach to synthesis urea N-methylpiperidine catalyzes efficient closed-loop recycling of polyesters and polycarbonates Predicting hydroformylation regioselectivity from literature data via machine learning Catalyzing the future Control of the electron spin state for enhancing plasmonic nitrogen fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1