首页 > 最新文献

Chem Catalysis最新文献

英文 中文
Intermittent CO2 electrolysis needs its time in the sun 间歇式二氧化碳电解需要阳光下的时间
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-06 DOI: 10.1016/j.checat.2024.101166
Izak Minnie, Hyunjik K. Kim, John Flake, Dongxia Liu
Taking advantage of the potentially low-cost and environmentally friendly nature of renewable energy sources like wind and photovoltaics has long been the aim of the CO2 electrolysis field. However, there have been sparse reports on the economic and performance implications of coupling these two systems. In this perspective, we present lessons that can be taken from work done in water electrolysis, summarize the progress that has been made in coupling electrochemical CO2 reduction systems to intermittent renewable energy sources, and perform a brief economic analysis on energy versus product storage in intermittent systems. Finally, we recommend future research directions, including rigorous studies on the effects of dynamic operation on electrolyzer components, strategies for integrating with continuous downstream processes, synergistic post-product processing via electrification technologies, and leveraging of artificial intelligence and automation to mitigate the unpredictability of CO₂ electrolysis.
利用风能和光伏等可再生能源潜在的低成本和环保特性,一直是二氧化碳电解领域的目标。然而,有关这两种系统耦合的经济和性能影响的报道却很少。在这一视角中,我们介绍了可从水电解领域的工作中吸取的经验教训,总结了在将电化学二氧化碳还原系统与间歇性可再生能源耦合方面所取得的进展,并对间歇性系统中的能量与产品存储进行了简要的经济分析。最后,我们提出了未来的研究方向,包括严格研究动态运行对电解槽组件的影响、与连续下游工艺集成的策略、通过电气化技术进行协同的产品后处理,以及利用人工智能和自动化来减轻 CO₂ 电解的不可预测性。
{"title":"Intermittent CO2 electrolysis needs its time in the sun","authors":"Izak Minnie, Hyunjik K. Kim, John Flake, Dongxia Liu","doi":"10.1016/j.checat.2024.101166","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101166","url":null,"abstract":"Taking advantage of the potentially low-cost and environmentally friendly nature of renewable energy sources like wind and photovoltaics has long been the aim of the CO<sub>2</sub> electrolysis field. However, there have been sparse reports on the economic and performance implications of coupling these two systems. In this perspective, we present lessons that can be taken from work done in water electrolysis, summarize the progress that has been made in coupling electrochemical CO<sub>2</sub> reduction systems to intermittent renewable energy sources, and perform a brief economic analysis on energy versus product storage in intermittent systems. Finally, we recommend future research directions, including rigorous studies on the effects of dynamic operation on electrolyzer components, strategies for integrating with continuous downstream processes, synergistic post-product processing via electrification technologies, and leveraging of artificial intelligence and automation to mitigate the unpredictability of CO₂ electrolysis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of the threshold potential that triggers photochemical water oxidation with Ru(II) photosensitizers and MOx catalysts 利用 Ru(II) 光敏剂和 MOx 催化剂发现引发光化学水氧化的阈值电位
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-04 DOI: 10.1016/j.checat.2024.101167
Megumi Okazaki, Yasuomi Yamazaki, Daling Lu, Shunsuke Nozawa, Osamu Ishitani, Kazuhiko Maeda
Photochemical water oxidation in the presence of a Ru(II) photosensitizer to form O2 is one of the most studied reactions in (photo)catalysis for both homogeneous and heterogeneous systems. In the present work, several Ru(II)-tris-diimine-type complexes with different ligands were used under a wide pH range (3.7–9.4) and over different transition-metal oxide (MOx) catalysts to reveal the factors that govern the O2 evolution activity. Most importantly, the results clarified that a certain “threshold” potential determines whether water oxidation can proceed and that this potential is related to the energy barrier for electron transfer from the MOx catalyst to the Ru(II) photosensitizer. The results of this work highlight that the potential of the electrons involved in the water oxidation on MOx catalysts can be estimated through the simple application of a photochemical reaction, which will be a useful measure for assessing the water oxidation activity of suspended nanoparticle catalysts.
在 Ru(II) 光敏剂存在下进行光化学水氧化生成 O2 是研究最多的均相和异相系统(光)催化反应之一。在本研究中,研究人员在较宽的 pH 值范围(3.7-9.4)内,在不同的过渡金属氧化物(MOx)催化剂上使用了几种具有不同配体的 Ru(II)-tris-diimine 型配合物,以揭示影响 O2 演化活性的因素。最重要的是,研究结果明确了一个特定的 "阈值 "电位决定了水氧化能否进行,而这个电位与电子从 MOx 催化剂转移到 Ru(II) 光敏剂的能量障碍有关。这项工作的结果突出表明,可以通过简单的光化学反应来估算参与 MOx 催化剂上水氧化作用的电子的电位,这将是评估悬浮纳米粒子催化剂水氧化活性的有用指标。
{"title":"Discovery of the threshold potential that triggers photochemical water oxidation with Ru(II) photosensitizers and MOx catalysts","authors":"Megumi Okazaki, Yasuomi Yamazaki, Daling Lu, Shunsuke Nozawa, Osamu Ishitani, Kazuhiko Maeda","doi":"10.1016/j.checat.2024.101167","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101167","url":null,"abstract":"Photochemical water oxidation in the presence of a Ru(II) photosensitizer to form O<sub>2</sub> is one of the most studied reactions in (photo)catalysis for both homogeneous and heterogeneous systems. In the present work, several Ru(II)-tris-diimine-type complexes with different ligands were used under a wide pH range (3.7–9.4) and over different transition-metal oxide (MO<sub><em>x</em></sub>) catalysts to reveal the factors that govern the O<sub>2</sub> evolution activity. Most importantly, the results clarified that a certain “threshold” potential determines whether water oxidation can proceed and that this potential is related to the energy barrier for electron transfer from the MO<sub><em>x</em></sub> catalyst to the Ru(II) photosensitizer. The results of this work highlight that the potential of the electrons involved in the water oxidation on MO<sub><em>x</em></sub> catalysts can be estimated through the simple application of a photochemical reaction, which will be a useful measure for assessing the water oxidation activity of suspended nanoparticle catalysts.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singly and doubly oxidized carbenes and their applications in catalysis 单氧化和双氧化碳烯及其在催化中的应用
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-11-04 DOI: 10.1016/j.checat.2024.101159
Alexis K. Day, Mehdi Abdellaoui, Michèle Soleilhavoup, Guy Bertrand
Over the last three decades, the highly tunable properties of N-heterocyclic carbenes (NHCs) and other stable singlet carbenes have led to a variety of applications. This perspective shows a novel facet of carbenes—i.e., their reductive properties—that allows them to function as catalysts in single-electron transfer (SET) reactions. The isolation and even the spectroscopic characterization of a singly oxidized carbene have yet to be done, but these species readily abstract hydrogen atoms while giving back the carbene conjugate acid, which behaves as the resting state of catalytic cycles. In sharp contrast, a doubly oxidized carbene has been isolated, and there is a strong likelihood that many other carbene dications will be isolated. Their first Lewis acidity is very high, suggesting possible applications in Lewis acid catalysis.
在过去的三十年里,N-杂环碳烯(NHCs)和其他稳定的单碳烯的高度可调特性带来了多种应用。这一视角展示了碳烯的一个新方面,即它们的还原特性,使它们能够在单电子转移(SET)反应中发挥催化剂的作用。单氧化碳烯的分离甚至光谱特性都还没有完成,但这些物种很容易抽取氢原子,同时还原出碳烯共轭酸,这种酸是催化循环的静止状态。与此形成鲜明对比的是,我们已经分离出了一种双氧化碳烯,而且很有可能分离出许多其他碳烯二阳离子。它们的第一路易斯酸度非常高,表明可能应用于路易斯酸催化。
{"title":"Singly and doubly oxidized carbenes and their applications in catalysis","authors":"Alexis K. Day, Mehdi Abdellaoui, Michèle Soleilhavoup, Guy Bertrand","doi":"10.1016/j.checat.2024.101159","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101159","url":null,"abstract":"Over the last three decades, the highly tunable properties of N-heterocyclic carbenes (NHCs) and other stable singlet carbenes have led to a variety of applications. This perspective shows a novel facet of carbenes—i.e., their reductive properties—that allows them to function as catalysts in single-electron transfer (SET) reactions. The isolation and even the spectroscopic characterization of a singly oxidized carbene have yet to be done, but these species readily abstract hydrogen atoms while giving back the carbene conjugate acid, which behaves as the resting state of catalytic cycles. In sharp contrast, a doubly oxidized carbene has been isolated, and there is a strong likelihood that many other carbene dications will be isolated. Their first Lewis acidity is very high, suggesting possible applications in Lewis acid catalysis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of metal nanostructure in ceria-supported catalysts for ammonia oxidation to nitrous oxide 金属纳米结构在氨氧化成氧化亚氮的铈支撑催化剂中的作用
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-31 DOI: 10.1016/j.checat.2024.101165
Ivan Surin, Qingxin Yang, Frank Krumeich, Mikhail Agrachev, Tatiana Otroshchenko, Vita A. Kondratenko, Evgenii V. Kondratenko, Javier Pérez-Ramírez
Manganese (Mn) and chromium (Cr) catalysts supported on CeO2 enable direct ammonia oxidation to nitrous oxide, N2O, but the lack of synthesis-structure-performance relations hinders rational catalyst design. Herein, we generate a platform of CeO2-supported Mn and Cr catalysts, systematically varying the metal nanostructure from single atoms to nanoparticles, and the carrier redox properties, as confirmed by advanced characterization methods. Surface reducibility of CeO2 emerges as a general descriptor, controlling N2O productivity. Conversely, structure sensitivity is metal specific, with Mn-based systems achieving high N2O selectivity in single-atom and nanoparticle forms, while the selectivity of Cr-based systems is dependent on metal dispersion. In situ UV-visible (UV-vis), steady-state, and transient kinetic studies unveil the ability of redox-active MnOx to synergize with CeO2 and enhance oxygen transport for the reaction following a Mars-van Krevelen mechanism. This work provides fundamental insights into the role and function of each catalyst component and guidelines for the development of improved N2O synthesis catalysts.
以 CeO2 为载体的锰(Mn)和铬(Cr)催化剂可将氨直接氧化为一氧化二氮(N2O),但由于缺乏合成-结构-性能关系,催化剂的合理设计受到阻碍。在此,我们生成了一个 CeO2 支持的锰和铬催化剂平台,系统地改变了从单原子到纳米颗粒的金属纳米结构以及载体的氧化还原特性,并通过先进的表征方法证实了这一点。CeO2 的表面还原性是控制 N2O 产率的一般描述因子。相反,结构敏感性具有金属特异性,以锰为基础的系统在单原子和纳米粒子形式下具有较高的 N2O 选择性,而以铬为基础的系统的选择性则取决于金属的分散性。原位紫外可见光(UV-vis)、稳态和瞬态动力学研究揭示了氧化还原活性 MnOx 与 CeO2 协同作用的能力,并按照 Mars-van Krevelen 机制增强了反应的氧气传输。这项研究从根本上揭示了催化剂各组分的作用和功能,为开发改良型 N2O 合成催化剂提供了指导。
{"title":"The role of metal nanostructure in ceria-supported catalysts for ammonia oxidation to nitrous oxide","authors":"Ivan Surin, Qingxin Yang, Frank Krumeich, Mikhail Agrachev, Tatiana Otroshchenko, Vita A. Kondratenko, Evgenii V. Kondratenko, Javier Pérez-Ramírez","doi":"10.1016/j.checat.2024.101165","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101165","url":null,"abstract":"Manganese (Mn) and chromium (Cr) catalysts supported on CeO<sub>2</sub> enable direct ammonia oxidation to nitrous oxide, N<sub>2</sub>O, but the lack of synthesis-structure-performance relations hinders rational catalyst design. Herein, we generate a platform of CeO<sub>2</sub>-supported Mn and Cr catalysts, systematically varying the metal nanostructure from single atoms to nanoparticles, and the carrier redox properties, as confirmed by advanced characterization methods. Surface reducibility of CeO<sub>2</sub> emerges as a general descriptor, controlling N<sub>2</sub>O productivity. Conversely, structure sensitivity is metal specific, with Mn-based systems achieving high N<sub>2</sub>O selectivity in single-atom and nanoparticle forms, while the selectivity of Cr-based systems is dependent on metal dispersion. <em>In situ</em> UV-visible (UV-vis), steady-state, and transient kinetic studies unveil the ability of redox-active MnO<sub><em>x</em></sub> to synergize with CeO<sub>2</sub> and enhance oxygen transport for the reaction following a Mars-van Krevelen mechanism. This work provides fundamental insights into the role and function of each catalyst component and guidelines for the development of improved N<sub>2</sub>O synthesis catalysts.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering intricacies of implementing single-atom alloy catalysts for low-temperature electrocatalytic CO2 reduction 实施单原子合金催化剂用于低温电催化二氧化碳还原的工程复杂性
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1016/j.checat.2024.101164
Isaac Kojo Seim, Manjeet Chhetri, John-Paul Jones, Ming Yang
Catalysts research for electrocatalytic CO2 reduction reactions (CO2R) has undergone rapid growth in the last decade. Single-atom alloy catalysts (SAAs) featuring atomically dispersed metal dopants on host metal surfaces have shown promises in boosting CO2R yield by optimizing the structure and synergy of the catalytic metals at the atomic scale. Despite the exciting development of SAAs for CO2R in fundamental science, dedicated studies for its engineering implementation have been absent. We use this perspective to discuss our non-exhaustive engineering considerations for implementing SAAs for CO2R. The perspective starts with a brief overview of the current research status for SAAs in CO2R, followed by focal points on structure uncertainties associated with catalyst manufacturing, catalyst layer degradation during reaction, and possibilities for SAAs to mitigate the salt precipitation issue at the device level. We hope our opinions will engage increasing attention toward the engineering catalysis research for applying SAAs to CO2R at scale.
近十年来,用于电催化二氧化碳还原反应(CO2R)的催化剂研究发展迅速。通过在原子尺度上优化催化金属的结构和协同作用,以主金属表面原子分散金属掺杂物为特征的单原子合金催化剂(SAAs)在提高 CO2R 产率方面展现出了广阔的前景。尽管用于 CO2R 的 SAAs 在基础科学方面取得了令人振奋的发展,但在工程实施方面却缺乏专门的研究。我们将从这个角度来讨论我们在实施用于 CO2R 的 SAA 过程中的非穷尽工程考虑因素。本视角首先简要概述了 SAA 在 CO2R 中的研究现状,然后重点讨论了与催化剂制造相关的结构不确定性、反应过程中的催化剂层降解以及 SAA 在设备层面缓解盐沉淀问题的可能性。我们希望我们的观点能吸引越来越多的人关注将 SAAs 大规模应用于 CO2R 的工程催化研究。
{"title":"Engineering intricacies of implementing single-atom alloy catalysts for low-temperature electrocatalytic CO2 reduction","authors":"Isaac Kojo Seim, Manjeet Chhetri, John-Paul Jones, Ming Yang","doi":"10.1016/j.checat.2024.101164","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101164","url":null,"abstract":"Catalysts research for electrocatalytic CO<sub>2</sub> reduction reactions (CO<sub>2</sub>R) has undergone rapid growth in the last decade. Single-atom alloy catalysts (SAAs) featuring atomically dispersed metal dopants on host metal surfaces have shown promises in boosting CO<sub>2</sub>R yield by optimizing the structure and synergy of the catalytic metals at the atomic scale. Despite the exciting development of SAAs for CO<sub>2</sub>R in fundamental science, dedicated studies for its engineering implementation have been absent. We use this perspective to discuss our non-exhaustive engineering considerations for implementing SAAs for CO<sub>2</sub>R. The perspective starts with a brief overview of the current research status for SAAs in CO<sub>2</sub>R, followed by focal points on structure uncertainties associated with catalyst manufacturing, catalyst layer degradation during reaction, and possibilities for SAAs to mitigate the salt precipitation issue at the device level. We hope our opinions will engage increasing attention toward the engineering catalysis research for applying SAAs to CO<sub>2</sub>R at scale.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrimination between OH− and H2O oxidation for oxygen evolution reaction 区分氧进化反应中的 OH- 氧化和 H2O 氧化
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.checat.2024.101157
Mengjun Xiao, Qianbao Wu, Hongfei Liu, Xia Zheng, Lei Li, Wei Wang, Chunhua Cui
OH/H2O-reactant discrimination for the oxygen evolution reaction (OER) is a critical but not well resolved issue. This has led to unreasonable activity comparisons, misinterpreted OER mechanisms, and ununified models for theoretical calculations regardless of the thermodynamic/kinetic difference between OH and H2O oxidation. Here, we discriminate between OH and H2O oxidation by tuning the interfacial OH concentration. Combining OER kinetic analysis with in situ 16OH/H218O isotopic labeling-based differential electrochemical mass spectrometry, we examine the respective electrochemical oxidation behaviors between OH and H2O oxidation. We find that OH oxidation presents ∼550 mV lower onset potential relative to H2O oxidation and that Tafel plotting gives slopes of ∼50 mV dec−1 for OH oxidation, which is substantially lower than those of ∼200 mV dec−1 for H2O oxidation on a model CoOOH catalyst. This work calls for the discrimination of OH/H2O oxidation as the prerequisite for future OER activity evaluation and mechanism studies.
氧进化反应(OER)中的 OH-/H2O 反应物判别是一个关键问题,但却没有得到很好的解决。这导致了不合理的活性比较、对 OER 机理的误解以及理论计算模型的不统一,而不考虑 OH- 和 H2O 氧化之间的热力学/动力学差异。在这里,我们通过调整界面 OH- 浓度来区分 OH- 和 H2O 氧化。结合 OER 动力学分析和基于同位素标记的原位 16OH-/H218O 差分电化学质谱法,我们研究了 OH- 氧化和 H2O 氧化各自的电化学氧化行为。我们发现,相对于 H2O 氧化,OH- 氧化的起始电位要低∼550 mV,而且塔菲尔图给出的 OH- 氧化斜率为∼50 mV dec-1,大大低于模型 CoOOH 催化剂上 H2O 氧化的斜率∼200 mV dec-1。这项工作要求将区分 OH-/H2O 氧化作为未来 OER 活性评估和机理研究的先决条件。
{"title":"Discrimination between OH− and H2O oxidation for oxygen evolution reaction","authors":"Mengjun Xiao, Qianbao Wu, Hongfei Liu, Xia Zheng, Lei Li, Wei Wang, Chunhua Cui","doi":"10.1016/j.checat.2024.101157","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101157","url":null,"abstract":"OH<sup><strong>−</strong></sup>/H<sub>2</sub>O-reactant discrimination for the oxygen evolution reaction (OER) is a critical but not well resolved issue. This has led to unreasonable activity comparisons, misinterpreted OER mechanisms, and ununified models for theoretical calculations regardless of the thermodynamic/kinetic difference between OH<sup><strong>−</strong></sup> and H<sub>2</sub>O oxidation. Here, we discriminate between OH<sup><strong>−</strong></sup> and H<sub>2</sub>O oxidation by tuning the interfacial OH<sup><strong>−</strong></sup> concentration. Combining OER kinetic analysis with <em>in situ</em> <sup>16</sup>OH<sup><strong>−</strong></sup>/H<sub>2</sub><sup>18</sup>O isotopic labeling-based differential electrochemical mass spectrometry, we examine the respective electrochemical oxidation behaviors between OH<sup><strong>−</strong></sup> and H<sub>2</sub>O oxidation. We find that OH<sup><strong>−</strong></sup> oxidation presents ∼550 mV lower onset potential relative to H<sub>2</sub>O oxidation and that Tafel plotting gives slopes of ∼50 mV dec<sup>−1</sup> for OH<sup><strong>−</strong></sup> oxidation, which is substantially lower than those of ∼200 mV dec<sup>−1</sup> for H<sub>2</sub>O oxidation on a model CoOOH catalyst. This work calls for the discrimination of OH<sup><strong>−</strong></sup>/H<sub>2</sub>O oxidation as the prerequisite for future OER activity evaluation and mechanism studies.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An electrocatalytic oxidative approach to synthesis urea 电催化氧化法合成尿素
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.checat.2024.101181
Shuangyin Wang
(Chem Catalysis 4, 101115; September 19, 2024)
(化学催化 4,101115;2024 年 9 月 19 日)
{"title":"An electrocatalytic oxidative approach to synthesis urea","authors":"Shuangyin Wang","doi":"10.1016/j.checat.2024.101181","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101181","url":null,"abstract":"(Chem Catalysis <em>4</em>, 101115; September 19, 2024)","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical and modular cycloadditions of in-situ formed exocyclic vinylcarbenes 原位形成外环乙烯基烯烃的实用模块化环化反应
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-25 DOI: 10.1016/j.checat.2024.101163
Cheng Zhang, Shanliang Dong, Martin C. Dietl, Matthias Rudolph, Xinke Zhang, Kemiao Hong, Wei Yi, A. Stephen K. Hashmi, Xinfang Xu
The exploration of reactive intermediates, which enable chemo- and regioselective cycloaddition reactions for the expeditious construction of fused and/or bridged ring systems, continues to draw a great deal of interest from the synthetic community. Vinylcarbene species, which serve as 3-carbon building blocks, have been frequently used for the construction of (hetero)cyclic frameworks through the successive formation of multiple carbon–carbon and/or carbon–heteroatom bonds. Herein, we report a concise strategy for the catalytic generation of an exocyclic α-vinyl gold carbene species via a selective gold(I)-promoted azide-enyne cyclization process. Subsequently, practical and modular cycloadditions of these in-situ-formed intermediates with different types of partners were disclosed, producing a diverse array of fused and bridged pyrroles in high chemo-, regio-, and stereoselectivity.
活性中间体可以通过化学和区域选择性环化反应快速构建融合和/或桥接环系统,对活性中间体的探索继续引起合成界的极大兴趣。作为 3 碳构建模块的乙烯基羰基化合物经常被用于通过连续形成多个碳-碳和/或碳-异原子键来构建(杂)环框架。在此,我们报告了一种通过选择性金(I)促进叠氮-烯炔环化过程催化生成外环α-乙烯基碳金物种的简明策略。随后,这些原位形成的中间体与不同类型的伙伴进行了实用的模块化环化反应,以高化学、区域和立体选择性生成了一系列不同的融合和桥接吡咯。
{"title":"Practical and modular cycloadditions of in-situ formed exocyclic vinylcarbenes","authors":"Cheng Zhang, Shanliang Dong, Martin C. Dietl, Matthias Rudolph, Xinke Zhang, Kemiao Hong, Wei Yi, A. Stephen K. Hashmi, Xinfang Xu","doi":"10.1016/j.checat.2024.101163","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101163","url":null,"abstract":"The exploration of reactive intermediates, which enable chemo- and regioselective cycloaddition reactions for the expeditious construction of fused and/or bridged ring systems, continues to draw a great deal of interest from the synthetic community. Vinylcarbene species, which serve as 3-carbon building blocks, have been frequently used for the construction of (hetero)cyclic frameworks through the successive formation of multiple carbon–carbon and/or carbon–heteroatom bonds. Herein, we report a concise strategy for the catalytic generation of an exocyclic α-vinyl gold carbene species via a selective gold(I)-promoted azide-enyne cyclization process. Subsequently, practical and modular cycloadditions of these <em>in</em>-<em>situ</em>-formed intermediates with different types of partners were disclosed, producing a diverse array of fused and bridged pyrroles in high chemo-, regio-, and stereoselectivity.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting photocatalytic water oxidation on lead chromate through crystal facet engineering 通过晶面工程提高铬酸铅的光催化水氧化能力
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-25 DOI: 10.1016/j.checat.2024.101153
Wenchao Jiang, Chenwei Ni, Yejun Xiao, Yue Zhao, Chu Han, Xuan Wu, Chengbo Zhang, Haibo Chi, Rengui Li, Can Li
Although crystal facet engineering of semiconductor crystals has been demonstrated to be effective in particulate photocatalysts for solar energy conversion, it is imperative to rationally regulate the exposed crystal facets and their configurations to improve charge separation efficiency. In this study, focusing on visible-light-driven water oxidation photocatalyst lead chromate (PbCrO4), we find that a flux-assisted treatment enables the precise tuning of the hole-accumulating facets of anisotropic PbCrO4 crystal, transitioning the top surface from {−101} to {001} facets while preserving its spatial charge separation characteristics. Owing to the superior hole-accumulating property and water oxidation kinetics of the {001} facets, the resulting Flux-PbCrO4 crystals achieve a charge separation efficiency exceeding 75%, leading to a remarkable improvement in photocatalytic water oxidation activity. Further incorporation of cocatalysts onto the Flux-PbCrO4 crystals results in an apparent quantum efficiency of 18.5% at 500 nm for photocatalytic water oxidation.
虽然在用于太阳能转换的微粒光催化剂中,半导体晶体的晶面工程已被证明是有效的,但要提高电荷分离效率,必须合理调节暴露的晶面及其构型。在本研究中,我们以可见光驱动的水氧化光催化剂铬酸铅(PbCrO4)为研究对象,发现通过助焊剂辅助处理,可以精确调节各向异性 PbCrO4 晶体的空穴堆积面,在保留其空间电荷分离特性的同时,将顶面从 {-101} 过渡到 {001} 面。由于{001}面具有优异的空穴聚集特性和水氧化动力学特性,所得到的 Flux-PbCrO4 晶体的电荷分离效率超过 75%,从而显著提高了光催化水氧化活性。在 Flux-PbCrO4 晶体上进一步加入茧催化剂后,500 纳米波长下光催化水氧化的表观量子效率达到了 18.5%。
{"title":"Boosting photocatalytic water oxidation on lead chromate through crystal facet engineering","authors":"Wenchao Jiang, Chenwei Ni, Yejun Xiao, Yue Zhao, Chu Han, Xuan Wu, Chengbo Zhang, Haibo Chi, Rengui Li, Can Li","doi":"10.1016/j.checat.2024.101153","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101153","url":null,"abstract":"Although crystal facet engineering of semiconductor crystals has been demonstrated to be effective in particulate photocatalysts for solar energy conversion, it is imperative to rationally regulate the exposed crystal facets and their configurations to improve charge separation efficiency. In this study, focusing on visible-light-driven water oxidation photocatalyst lead chromate (PbCrO<sub>4</sub>), we find that a flux-assisted treatment enables the precise tuning of the hole-accumulating facets of anisotropic PbCrO<sub>4</sub> crystal, transitioning the top surface from {−101} to {001} facets while preserving its spatial charge separation characteristics. Owing to the superior hole-accumulating property and water oxidation kinetics of the {001} facets, the resulting Flux-PbCrO<sub>4</sub> crystals achieve a charge separation efficiency exceeding 75%, leading to a remarkable improvement in photocatalytic water oxidation activity. Further incorporation of cocatalysts onto the Flux-PbCrO<sub>4</sub> crystals results in an apparent quantum efficiency of 18.5% at 500 nm for photocatalytic water oxidation.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the repertoire of imine reductases by mining divergent biosynthetic pathways for promiscuous reactivity 通过挖掘不同生物合成途径的杂合反应性,扩大亚胺还原酶的范围
IF 9.4 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-24 DOI: 10.1016/j.checat.2024.101160
Godwin A. Aleku, Florian Hollfelder
Imine reductases (IREDs) are invaluable catalysts for enantioselective imine reduction and reductive amination of carbonyl compounds. Their synthetic versatility is, however, limited by their substrate scope, and new IREDs are needed. Current IREDs are closely related to the initially characterized enzymes, as their discovery has been driven by sequence homology searches. Here, we demonstrate a functional genomics approach based on biosynthetic promiscuity, guided by the identification of C=N reducing enzymes acting on large, complex substrates in biosynthetic pathways. These substrate-promiscuous biocatalysts share low homology to existing IREDs and fall into distinct functional enzyme families, yet they catalyze the hydrogenation of non-native imines as well as the reductive amination of simple ketones. Venturing further into sequence space without the constraints of close homology, but instead guided by functional promiscuity, has thus led us to distinct, previously unrecognized and unexplored areas of sequence space for mining IREDs for synthesis.
亚胺还原酶(IRED)是对映选择性亚胺还原和羰基化合物还原胺化的重要催化剂。然而,它们的合成多功能性受到底物范围的限制,因此需要新的 IRED。目前的 IRED 与最初表征的酶密切相关,因为它们的发现是由序列同源性搜索驱动的。在这里,我们展示了一种基于生物合成杂合性的功能基因组学方法,该方法以鉴定生物合成途径中作用于大型复杂底物的 C=N 还原酶为指导。这些底物杂化生物催化剂与现有 IRED 的同源性较低,属于不同的功能酶家族,但它们能催化非原生亚胺的氢化以及简单酮的还原胺化。因此,在没有近似同源性限制的情况下,而是在功能混杂性的指导下进一步探索序列空间,使我们发现了以前未曾认识和探索过的独特序列空间领域,以挖掘用于合成的 IRED。
{"title":"Expanding the repertoire of imine reductases by mining divergent biosynthetic pathways for promiscuous reactivity","authors":"Godwin A. Aleku, Florian Hollfelder","doi":"10.1016/j.checat.2024.101160","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101160","url":null,"abstract":"Imine reductases (IREDs) are invaluable catalysts for enantioselective imine reduction and reductive amination of carbonyl compounds. Their synthetic versatility is, however, limited by their substrate scope, and new IREDs are needed. Current IREDs are closely related to the initially characterized enzymes, as their discovery has been driven by sequence homology searches. Here, we demonstrate a <em>functional</em> genomics approach based on biosynthetic promiscuity, guided by the identification of C=N reducing enzymes acting on large, complex substrates in biosynthetic pathways. These substrate-promiscuous biocatalysts share low homology to existing IREDs and fall into distinct functional enzyme families, yet they catalyze the hydrogenation of non-native imines as well as the reductive amination of simple ketones. Venturing further into sequence space without the constraints of close homology, but instead guided by functional promiscuity, has thus led us to distinct, previously unrecognized and unexplored areas of sequence space for mining IREDs for synthesis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chem Catalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1