G. E. Khazanov, S. A. Ermakov, V. A. Dobrokhotov, G. V. Leshchev, A. V. Kupaev, O. A. Danilicheva
{"title":"A Study of Gravitational Wave Attenuation in Fragmented Ice","authors":"G. E. Khazanov, S. A. Ermakov, V. A. Dobrokhotov, G. V. Leshchev, A. V. Kupaev, O. A. Danilicheva","doi":"10.1134/s0010952523700673","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Sea ice in its initial formation stages in the nearshore zone can exist in various forms such as grease ice, snow sludge, and pancake ice. These initial ice forms (IIFs) lead to the attenuation of waves on the sea surface, consequently affecting the intensity of microwave scattering on the sea surface. This complicates the identification of areas covered by IIFs that are situated between consolidated ice and open water. This work aims to analyze wave propagation in the presence of IIFs to develop physical models of wave attenuation. The paper presents a description and results of special field experiments to investigate the attenuation of wind waves of various lengths in the presence of ice simulators. Results of numerical simulation of the attenuation of gravitational waves and a comparison with experimental results are also given. One of the significant findings in the studied dependence of the attenuation coefficient on the ice floe size-to-wave length ratio, observed in both field and numerical experiments, is the discovery of a local maximum for waves with lengths of the order of the “ice floe” size. A physical interpretation of the mechanism of gravitational wave attenuation in the presence of ice floes is proposed, taking into account their attached mass.</p>","PeriodicalId":56319,"journal":{"name":"Cosmic Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cosmic Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0010952523700673","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sea ice in its initial formation stages in the nearshore zone can exist in various forms such as grease ice, snow sludge, and pancake ice. These initial ice forms (IIFs) lead to the attenuation of waves on the sea surface, consequently affecting the intensity of microwave scattering on the sea surface. This complicates the identification of areas covered by IIFs that are situated between consolidated ice and open water. This work aims to analyze wave propagation in the presence of IIFs to develop physical models of wave attenuation. The paper presents a description and results of special field experiments to investigate the attenuation of wind waves of various lengths in the presence of ice simulators. Results of numerical simulation of the attenuation of gravitational waves and a comparison with experimental results are also given. One of the significant findings in the studied dependence of the attenuation coefficient on the ice floe size-to-wave length ratio, observed in both field and numerical experiments, is the discovery of a local maximum for waves with lengths of the order of the “ice floe” size. A physical interpretation of the mechanism of gravitational wave attenuation in the presence of ice floes is proposed, taking into account their attached mass.
期刊介绍:
Cosmic Research publishes scientific papers covering all subjects of space science and technology, including the following: ballistics, flight dynamics of the Earth’s artificial satellites and automatic interplanetary stations; problems of transatmospheric descent; design and structure of spacecraft and scientific research instrumentation; life support systems and radiation safety of manned spacecrafts; exploration of the Earth from Space; exploration of near space; exploration of the Sun, planets, secondary planets, and interplanetary medium; exploration of stars, nebulae, interstellar medium, galaxies, and quasars from spacecraft; and various astrophysical problems related to space exploration. A chronicle of scientific events and other notices concerning the main topics of the journal are also presented.