Unscented Trajectory Optimization

I. M. Ross, R. J. Proulx, M. Karpenko
{"title":"Unscented Trajectory Optimization","authors":"I. M. Ross, R. J. Proulx, M. Karpenko","doi":"arxiv-2405.02753","DOIUrl":null,"url":null,"abstract":"In a nutshell, unscented trajectory optimization is the generation of optimal\ntrajectories through the use of an unscented transform. Although unscented\ntrajectory optimization was introduced by the authors about a decade ago, it is\nreintroduced in this paper as a special instantiation of tychastic optimal\ncontrol theory. Tychastic optimal control theory (from \\textit{Tyche}, the\nGreek goddess of chance) avoids the use of a Brownian motion and the resulting\nIt\\^{o} calculus even though it uses random variables across the entire\nspectrum of a problem formulation. This approach circumvents the enormous\ntechnical and numerical challenges associated with stochastic trajectory\noptimization. Furthermore, it is shown how a tychastic optimal control problem\nthat involves nonlinear transformations of the expectation operator can be\nquickly instantiated using an unscented transform. These nonlinear\ntransformations are particularly useful in managing trajectory dispersions be\nit associated with path constraints or targeted values of final-time\nconditions. This paper also presents a systematic and rapid process for\nformulating and computing the most desirable tychastic trajectory using an\nunscented transform. Numerical examples are used to illustrate how unscented\ntrajectory optimization may be used for risk reduction and mission recovery\ncaused by uncertainties and failures.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a nutshell, unscented trajectory optimization is the generation of optimal trajectories through the use of an unscented transform. Although unscented trajectory optimization was introduced by the authors about a decade ago, it is reintroduced in this paper as a special instantiation of tychastic optimal control theory. Tychastic optimal control theory (from \textit{Tyche}, the Greek goddess of chance) avoids the use of a Brownian motion and the resulting It\^{o} calculus even though it uses random variables across the entire spectrum of a problem formulation. This approach circumvents the enormous technical and numerical challenges associated with stochastic trajectory optimization. Furthermore, it is shown how a tychastic optimal control problem that involves nonlinear transformations of the expectation operator can be quickly instantiated using an unscented transform. These nonlinear transformations are particularly useful in managing trajectory dispersions be it associated with path constraints or targeted values of final-time conditions. This paper also presents a systematic and rapid process for formulating and computing the most desirable tychastic trajectory using an unscented transform. Numerical examples are used to illustrate how unscented trajectory optimization may be used for risk reduction and mission recovery caused by uncertainties and failures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无色轨迹优化
简而言之,无特征轨迹优化就是通过使用无特征变换生成最优轨迹。虽然无特征轨迹优化是作者在大约十年前提出的,但本文将其作为tychastic最优控制理论的一个特殊实例加以介绍。tychastic最优控制理论(源自希腊的机会女神textit{Tyche})避免使用布朗运动和由此产生的It\^{o}微积分,即使它在问题表述的整个过程中使用随机变量。这种方法规避了与随机轨迹优化相关的巨大技术和数值挑战。此外,它还展示了如何使用无符号变换快速实例化涉及期望算子非线性变换的tychastic最优控制问题。这些非线性变换在管理与路径约束或最终时间条件的目标值相关的轨迹离散方面特别有用。本文还介绍了一种系统化的快速流程,用于使用非香味变换制定和计算最理想的非线性轨迹。通过数值示例,说明了无特征轨迹优化如何用于降低不确定性和故障导致的风险和任务恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1