Bayesian Inference for Estimating Heat Sources through Temperature Assimilation

Hanieh Mousavi, Jeff D. Eldredge
{"title":"Bayesian Inference for Estimating Heat Sources through Temperature Assimilation","authors":"Hanieh Mousavi, Jeff D. Eldredge","doi":"arxiv-2405.02319","DOIUrl":null,"url":null,"abstract":"This paper introduces a Bayesian inference framework for two-dimensional\nsteady-state heat conduction, focusing on the estimation of unknown distributed\nheat sources in a thermally-conducting medium with uniform conductivity. The\ngoal is to infer heater locations, strengths, and shapes using temperature\nassimilation in the Euclidean space, employing a Fourier series to represent\neach heater's shape. The Markov Chain Monte Carlo (MCMC) method, incorporating\nthe random-walk Metropolis-Hasting algorithm and parallel tempering, is\nutilized for posterior distribution exploration in both unbounded and\nwall-bounded domains. Strong correlations between heat strength and heater area\nprompt caution against simultaneously estimating these two quantities. It is\nfound that multiple solutions arise in cases where the number of temperature\nsensors is less than the number of unknown states. Moreover, smaller heaters\nintroduce greater uncertainty in estimated strength. The diffusive nature of\nheat conduction smooths out any deformations in the temperature contours,\nespecially in the presence of multiple heaters positioned near each other,\nimpacting convergence. In wall-bounded domains with Neumann boundary\nconditions, the inference of heater parameters tends to be more accurate than\nin unbounded domains.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a Bayesian inference framework for two-dimensional steady-state heat conduction, focusing on the estimation of unknown distributed heat sources in a thermally-conducting medium with uniform conductivity. The goal is to infer heater locations, strengths, and shapes using temperature assimilation in the Euclidean space, employing a Fourier series to represent each heater's shape. The Markov Chain Monte Carlo (MCMC) method, incorporating the random-walk Metropolis-Hasting algorithm and parallel tempering, is utilized for posterior distribution exploration in both unbounded and wall-bounded domains. Strong correlations between heat strength and heater area prompt caution against simultaneously estimating these two quantities. It is found that multiple solutions arise in cases where the number of temperature sensors is less than the number of unknown states. Moreover, smaller heaters introduce greater uncertainty in estimated strength. The diffusive nature of heat conduction smooths out any deformations in the temperature contours, especially in the presence of multiple heaters positioned near each other, impacting convergence. In wall-bounded domains with Neumann boundary conditions, the inference of heater parameters tends to be more accurate than in unbounded domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过温度同化估算热源的贝叶斯推断法
本文介绍了二维稳态热传导的贝叶斯推理框架,重点是对具有均匀传导性的导热介质中的未知分布式热源进行估计。目标是利用欧几里得空间的温度同化推断加热器的位置、强度和形状,并采用傅里叶级数来表示每个加热器的形状。马尔可夫链蒙特卡罗(MCMC)方法结合了随机漫步 Metropolis-Hasting 算法和并行回火,用于在无界和有界域中探索后验分布。热强度和加热器面积之间的强相关性提醒我们不要同时估计这两个量。研究发现,在温度传感器数量少于未知状态数量的情况下,会出现多个解决方案。此外,加热器越小,估计强度的不确定性越大。热传导的扩散性质会平滑温度等值线的任何变形,尤其是在多个加热器相互靠近的情况下,从而影响收敛性。在具有新曼边界条件的壁边界域中,加热器参数的推断往往比无边界域更精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1