{"title":"The Limit Cycles for a Class of Non-autonomous Piecewise Differential Equations","authors":"Renhao Tian, Yulin Zhao","doi":"10.1007/s12346-024-01050-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a class of non-autonomous piecewise differential equations defined as follows: <span>\\(dx/dt=a_{0}(t)+\\sum _{i=1}^{n}a_{i}(t)|x|^{i}\\)</span>, where <span>\\(n\\in \\mathbb {N}^{+}\\)</span> and each <span>\\(a_{i}(t)\\)</span> is real, 1-periodic, and smooth function. We deal with two basic problems related to their limit cycles <span>\\(\\big (\\text {isolated solutions satisfying} x(0) = x(1)\\big )\\)</span>. First, we prove that, for any given <span>\\(n\\in \\mathbb {N}^{+}\\)</span>, there is no upper bound on the number of limit cycles of such equations. Second, we demonstrate that if <span>\\(a_{1}(t),\\ldots , a_{n}(t)\\)</span> do not change sign and have the same sign in the interval [0, 1], then the equation has at most two limit cycles. We provide a comprehensive analysis of all possible configurations of these limit cycles. In addition, we extend the result of at most two limit cycles to a broader class of general non-autonomous piecewise polynomial differential equations and offer a criterion for determining the uniqueness of the limit cycle within this class of equations.\n</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"46 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01050-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study a class of non-autonomous piecewise differential equations defined as follows: \(dx/dt=a_{0}(t)+\sum _{i=1}^{n}a_{i}(t)|x|^{i}\), where \(n\in \mathbb {N}^{+}\) and each \(a_{i}(t)\) is real, 1-periodic, and smooth function. We deal with two basic problems related to their limit cycles \(\big (\text {isolated solutions satisfying} x(0) = x(1)\big )\). First, we prove that, for any given \(n\in \mathbb {N}^{+}\), there is no upper bound on the number of limit cycles of such equations. Second, we demonstrate that if \(a_{1}(t),\ldots , a_{n}(t)\) do not change sign and have the same sign in the interval [0, 1], then the equation has at most two limit cycles. We provide a comprehensive analysis of all possible configurations of these limit cycles. In addition, we extend the result of at most two limit cycles to a broader class of general non-autonomous piecewise polynomial differential equations and offer a criterion for determining the uniqueness of the limit cycle within this class of equations.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.