Clustering Approaches for Gait Analysis within Neurological Disorders: A Narrative Review.

Q1 Computer Science Digital Biomarkers Pub Date : 2024-05-08 eCollection Date: 2024-01-01 DOI:10.1159/000538270
Jonas Hummel, Michael Schwenk, Daniel Seebacher, Philipp Barzyk, Joachim Liepert, Manuel Stein
{"title":"Clustering Approaches for Gait Analysis within Neurological Disorders: A Narrative Review.","authors":"Jonas Hummel, Michael Schwenk, Daniel Seebacher, Philipp Barzyk, Joachim Liepert, Manuel Stein","doi":"10.1159/000538270","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The prevalence of neurological disorders is increasing, underscoring the importance of objective gait analysis to help clinicians identify specific deficits. Nevertheless, existing technological solutions for gait analysis often suffer from impracticality in daily clinical use, including excessive cost, time constraints, and limited processing capabilities.</p><p><strong>Summary: </strong>This review aims to evaluate existing techniques for clustering patients with the same neurological disorder to assist clinicians in optimizing treatment options. A narrative review of thirteen relevant studies was conducted, characterizing their methods, and evaluating them against seven criteria. Additionally, the results are summarized in two comprehensive tables. Recent approaches show promise; however, our results indicate that, overall, only three approaches display medium or high process maturity, and only two show high clinical applicability.</p><p><strong>Key messages: </strong>Our findings highlight the necessity for advancements, specifically regarding the use of markerless optical tracking systems, the optimization of experimental plans, and the external validation of results. This narrative review provides a comprehensive overview of existing clustering techniques, bridging the gap between instrumented gait analysis and its real-world clinical utility. We encourage researchers to use our findings and those from other medical fields to enhance clustering techniques for patients with neurological disorders, facilitating the identification of disparities within groups and their extent, ultimately improving patient outcomes.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"93-101"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000538270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The prevalence of neurological disorders is increasing, underscoring the importance of objective gait analysis to help clinicians identify specific deficits. Nevertheless, existing technological solutions for gait analysis often suffer from impracticality in daily clinical use, including excessive cost, time constraints, and limited processing capabilities.

Summary: This review aims to evaluate existing techniques for clustering patients with the same neurological disorder to assist clinicians in optimizing treatment options. A narrative review of thirteen relevant studies was conducted, characterizing their methods, and evaluating them against seven criteria. Additionally, the results are summarized in two comprehensive tables. Recent approaches show promise; however, our results indicate that, overall, only three approaches display medium or high process maturity, and only two show high clinical applicability.

Key messages: Our findings highlight the necessity for advancements, specifically regarding the use of markerless optical tracking systems, the optimization of experimental plans, and the external validation of results. This narrative review provides a comprehensive overview of existing clustering techniques, bridging the gap between instrumented gait analysis and its real-world clinical utility. We encourage researchers to use our findings and those from other medical fields to enhance clustering techniques for patients with neurological disorders, facilitating the identification of disparities within groups and their extent, ultimately improving patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经系统疾病步态分析的聚类方法:叙述性综述。
背景:神经系统疾病的发病率正在不断上升,这凸显了客观步态分析在帮助临床医生识别特定缺陷方面的重要性。然而,现有的步态分析技术解决方案在日常临床使用中往往存在不切实际的问题,包括成本过高、时间限制和处理能力有限。摘要:本综述旨在评估将患有相同神经系统疾病的患者聚类的现有技术,以帮助临床医生优化治疗方案。我们对 13 项相关研究进行了叙述性综述,分析了这些研究的方法特点,并根据七项标准对其进行了评估。此外,我们还在两张综合表格中对研究结果进行了总结。最近的方法显示出了前景;然而,我们的结果表明,总体而言,只有三种方法显示出了中等或较高的流程成熟度,只有两种方法显示出了较高的临床适用性:我们的研究结果凸显了进步的必要性,特别是在无标记光学跟踪系统的使用、实验计划的优化以及结果的外部验证方面。这篇叙述性综述全面概述了现有的聚类技术,弥补了仪器步态分析与实际临床应用之间的差距。我们鼓励研究人员利用我们的研究成果和其他医学领域的研究成果,加强神经系统疾病患者的聚类技术,促进识别群体内的差异及其程度,最终改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Biomarkers
Digital Biomarkers Medicine-Medicine (miscellaneous)
CiteScore
10.60
自引率
0.00%
发文量
12
审稿时长
23 weeks
期刊最新文献
The Imperative of Voice Data Collection in Clinical Trials. eHealth and mHealth in Antimicrobial Stewardship Programs. Detecting Longitudinal Trends between Passively Collected Phone Use and Anxiety among College Students. Video Assessment to Detect Amyotrophic Lateral Sclerosis. Digital Vocal Biomarker of Smoking Status Using Ecological Audio Recordings: Results from the Colive Voice Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1