Analytical Validation of Wrist-Worn Accelerometer-Based Step-Count Methods during Structured and Free-Living Activities.

Q1 Computer Science Digital Biomarkers Pub Date : 2024-12-11 eCollection Date: 2025-01-01 DOI:10.1159/000542850
Robert T Marcotte, Shelby L Bachman, Yaya Zhai, Ieuan Clay, Kate Lyden
{"title":"Analytical Validation of Wrist-Worn Accelerometer-Based Step-Count Methods during Structured and Free-Living Activities.","authors":"Robert T Marcotte, Shelby L Bachman, Yaya Zhai, Ieuan Clay, Kate Lyden","doi":"10.1159/000542850","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Wrist-worn accelerometers can capture stepping behavior passively, continuously, and remotely. Methods utilizing peak detection, threshold crossing, and frequency analysis have been used to detect steps from wrist-worn accelerometer data, but it remains unclear how different approaches perform across a range of walking speeds and free-living activities. In this study, we evaluated the performance of four open-source methods for deriving step counts from wrist-worn accelerometry data, when applied to data from a range of structured locomotion and free-living activities. In addition, we assessed how modifying the parameters of these methods would affect their performance.</p><p><strong>Methods: </strong>Twenty-one participants (ages 20-33) wore an ActiGraph CentrePoint Insight Watch (Actigraph, LLC) on their non-dominant wrist while completing structured locomotion activities in a motion capture laboratory and during a free-living period in a mock apartment. Criterion step counts were determined from motion capture heel-strike events and from StepWatch 3 (Modus Health, LLC) during the free-living period. Four open-source methods implementing different algorithmic approaches were applied to CPIW data to derive step counts. The quantity and timing of method-derived and criterion steps during each type of activity were then compared.</p><p><strong>Results: </strong>In terms of performance during structured locomotion, methods that relied on a single parameter, such as peak detection or threshold crossing, demonstrated the lowest bias among those investigated. Furthermore, three of the four investigated methods overestimated step counts during slow walking and underestimated step counts during fast walking, while the last method consistently underestimated at least half of the recorded steps across all speeds. During free-living activities, the method relying on frequency analysis exhibited the lowest percent error of all methods. Finally, we found that the incorporation of a locomotion classifier, wherein steps were only estimated during identified locomotion periods, reduced error for two methods when applied to data across structured and free-living settings.</p><p><strong>Conclusion: </strong>In studying the performance of different step-counting approaches across different settings, we found a tradeoff between performance during structured walking and that during free-living activities. These findings highlight the opportunity for novel, context-aware methods for accurate step counting across real-world settings.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"9 1","pages":"10-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000542850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Wrist-worn accelerometers can capture stepping behavior passively, continuously, and remotely. Methods utilizing peak detection, threshold crossing, and frequency analysis have been used to detect steps from wrist-worn accelerometer data, but it remains unclear how different approaches perform across a range of walking speeds and free-living activities. In this study, we evaluated the performance of four open-source methods for deriving step counts from wrist-worn accelerometry data, when applied to data from a range of structured locomotion and free-living activities. In addition, we assessed how modifying the parameters of these methods would affect their performance.

Methods: Twenty-one participants (ages 20-33) wore an ActiGraph CentrePoint Insight Watch (Actigraph, LLC) on their non-dominant wrist while completing structured locomotion activities in a motion capture laboratory and during a free-living period in a mock apartment. Criterion step counts were determined from motion capture heel-strike events and from StepWatch 3 (Modus Health, LLC) during the free-living period. Four open-source methods implementing different algorithmic approaches were applied to CPIW data to derive step counts. The quantity and timing of method-derived and criterion steps during each type of activity were then compared.

Results: In terms of performance during structured locomotion, methods that relied on a single parameter, such as peak detection or threshold crossing, demonstrated the lowest bias among those investigated. Furthermore, three of the four investigated methods overestimated step counts during slow walking and underestimated step counts during fast walking, while the last method consistently underestimated at least half of the recorded steps across all speeds. During free-living activities, the method relying on frequency analysis exhibited the lowest percent error of all methods. Finally, we found that the incorporation of a locomotion classifier, wherein steps were only estimated during identified locomotion periods, reduced error for two methods when applied to data across structured and free-living settings.

Conclusion: In studying the performance of different step-counting approaches across different settings, we found a tradeoff between performance during structured walking and that during free-living activities. These findings highlight the opportunity for novel, context-aware methods for accurate step counting across real-world settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Biomarkers
Digital Biomarkers Medicine-Medicine (miscellaneous)
CiteScore
10.60
自引率
0.00%
发文量
12
审稿时长
23 weeks
期刊最新文献
A Holistic Approach to the Measurement of Physical Function in Clinical Research. Multiscale Analysis of Alzheimer's Disease Using Feature Fusion in Cognitive and Sensory Brain Regions. Multicenter Evaluation of Machine-Learning Continuous Pulse Rate Algorithm on Wrist-Worn Device. Analytical Validation of Wrist-Worn Accelerometer-Based Step-Count Methods during Structured and Free-Living Activities. The State of Digital Biomarkers in Mental Health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1