Axel H Newton, Jennifer C Hutchison, Ella R Farley, Emily L Scicluna, Neil A Youngson, Jun Liu, Brandon R Menzies, Thomas B Hildebrandt, Ben M Lawrence, Angus H W Sutherland, David L Potter, Gerard A Tarulli, Lynne Selwood, Stephen Frankenberg, Sara Ord, Andrew J Pask
{"title":"Embryology of the fat-tailed dunnart (Sminthopsis crassicaudata): A marsupial model for comparative mammalian developmental and evolutionary biology.","authors":"Axel H Newton, Jennifer C Hutchison, Ella R Farley, Emily L Scicluna, Neil A Youngson, Jun Liu, Brandon R Menzies, Thomas B Hildebrandt, Ben M Lawrence, Angus H W Sutherland, David L Potter, Gerard A Tarulli, Lynne Selwood, Stephen Frankenberg, Sara Ord, Andrew J Pask","doi":"10.1002/dvdy.711","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Marsupials are a diverse and unique group of mammals, but remain underutilized in developmental biology studies, hindering our understanding of mammalian diversity. This study focuses on establishing the fat-tailed dunnart (Sminthopsis crassicaudata) as an emerging laboratory model, providing reproductive monitoring methods and a detailed atlas of its embryonic development.</p><p><strong>Results: </strong>We monitored the reproductive cycles of female dunnarts and established methods to confirm pregnancy and generate timed embryos. With this, we characterized dunnart embryo development from cleavage to birth, and provided detailed descriptions of its organogenesis and heterochronic growth patterns. Drawing stage-matched comparisons with other species, we highlight the dunnarts accelerated craniofacial and limb development, characteristic of marsupials.</p><p><strong>Conclusions: </strong>The fat-tailed dunnart is an exceptional marsupial model for developmental studies, where our detailed practices for reproductive monitoring and embryo collection enhance its accessibility in other laboratories. The accelerated developmental patterns observed in the Dunnart provide a valuable system for investigating molecular mechanisms underlying heterochrony. This study not only contributes to our understanding of marsupial development but also equips the scientific community with new resources for addressing biodiversity challenges and developing effective conservation strategies in marsupials.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/dvdy.711","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Marsupials are a diverse and unique group of mammals, but remain underutilized in developmental biology studies, hindering our understanding of mammalian diversity. This study focuses on establishing the fat-tailed dunnart (Sminthopsis crassicaudata) as an emerging laboratory model, providing reproductive monitoring methods and a detailed atlas of its embryonic development.
Results: We monitored the reproductive cycles of female dunnarts and established methods to confirm pregnancy and generate timed embryos. With this, we characterized dunnart embryo development from cleavage to birth, and provided detailed descriptions of its organogenesis and heterochronic growth patterns. Drawing stage-matched comparisons with other species, we highlight the dunnarts accelerated craniofacial and limb development, characteristic of marsupials.
Conclusions: The fat-tailed dunnart is an exceptional marsupial model for developmental studies, where our detailed practices for reproductive monitoring and embryo collection enhance its accessibility in other laboratories. The accelerated developmental patterns observed in the Dunnart provide a valuable system for investigating molecular mechanisms underlying heterochrony. This study not only contributes to our understanding of marsupial development but also equips the scientific community with new resources for addressing biodiversity challenges and developing effective conservation strategies in marsupials.
期刊介绍:
Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.