The rising incidence of Alzheimer's disease (AD) and the associated economic impacts has prompted a global focus in the field. In recent years, there has been a growing understanding of the pathogenic mechanisms of AD, including the aggregation of β-amyloid, hyperphosphorylated tau, and neuroinflammation. These processes collectively lead to neurodegeneration and cognitive decline, which ultimately results in the loss of autonomy in patients. Currently, there are three main types of AD treatments: clinical tools, pharmacological treatment, and material interventions. This review provides a comprehensive analysis of the underlying etiology and pathogenesis of AD, as well as an overview of the current prevalence of AD treatments. We believe this article can help deepen our understanding of the AD mechanism, and facilitate the clinical translation of scientific research or therapies, to address this global problem of AD.
{"title":"Review on pathogenesis and treatment of Alzheimer's disease.","authors":"Jinxia Cai, Yanqing Liu, Haojun Fan","doi":"10.1002/dvdy.762","DOIUrl":"https://doi.org/10.1002/dvdy.762","url":null,"abstract":"<p><p>The rising incidence of Alzheimer's disease (AD) and the associated economic impacts has prompted a global focus in the field. In recent years, there has been a growing understanding of the pathogenic mechanisms of AD, including the aggregation of β-amyloid, hyperphosphorylated tau, and neuroinflammation. These processes collectively lead to neurodegeneration and cognitive decline, which ultimately results in the loss of autonomy in patients. Currently, there are three main types of AD treatments: clinical tools, pharmacological treatment, and material interventions. This review provides a comprehensive analysis of the underlying etiology and pathogenesis of AD, as well as an overview of the current prevalence of AD treatments. We believe this article can help deepen our understanding of the AD mechanism, and facilitate the clinical translation of scientific research or therapies, to address this global problem of AD.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Every organism is a model organism for understanding development, evolution, disease, and regeneration, and we have only begun to scratch the surface of the interdisciplinary genetic, molecular, cellular, and developmental mechanisms that regulate these biological processes. These “Highlights” denote exciting advances recently reported in <i>Developmental Dynamics</i> that illustrate the complex dynamics of developmental biology.</p><p><b>Ciliogenesis in Development and Disease</b> “Actin cytoskeletal regulation of ciliogenesis in development and disease” by Brittany Hufft-Martinez, Henry Wang, Irfan Saadi, and Pamela Tran; <i>Dev Dyn</i> 253:12, pp. 1076–1093. https://doi.org/10.1002/dvdy.724. Primary cilia are antenna-like sensory organelles, comprised of microtubule-based cellular projections, which serve both motile and non-motile sensory functions. Cilia are required for reproduction and regulate multiple cellular processes, including cell motility, cell cycle, cell differentiation, autophagy, and cell–cell communication. Their evolutionary conservation from algae to mammals, has informed our understanding of the basic biology of mammalian primary cilia, organismal development, and the genetic etiology of ciliopathies. This review discusses studies that have revealed the importance of regulating the actin cytoskeleton in ciliary homeostasis, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. It also highlights both conserved and divergent mechanisms in algae and mammalian cells. Finally, the authors compare the phenotypic manifestations of patients with ciliopathies, to those with mutations in actin and actin-associated genes and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie specific birth defects.</p><p><b>Organogenesis, Teeth, and Retinoic Acid</b> “Differential retinoic acid sensitivity of oral and pharyngeal teeth in medaka (<i>Oryzias latipes</i>) supports the importance of pouch–cleft contacts in pharyngeal tooth initiation” by Daria Loarinova and Ann Huysseune; <i>Dev Dyn</i> 253:12, pp. 1094–1105. https://doi.org/10.1002/dvdy.723. In early actinopterygian evolution, the dentition was widespread throughout the oropharynx, encompassing teeth on each pharyngeal arch. This wide distribution was reduced over time, as teeth were retained only on the most anterior and most posterior parts of the visceral skeleton, establishing an oral and a pharyngeal dentition, respectively. However, advanced teleost such as medaka, have retained both oral dentition and pharyngeal dentition, whereas less advanced teleosts such as zebrafish have lost oral dentition, retaining teeth exclusively on the last pharyngeal arch. Learn how previous studies claiming that pharyngeal teeth in medaka (<i>Oryzias latipes</i>) were induced independent of retinoic acid signaling unlike in zebrafish (<i>Danio rerio</i>) prompted the aut
{"title":"Editorial highlights","authors":"Paul A. Trainor","doi":"10.1002/dvdy.760","DOIUrl":"https://doi.org/10.1002/dvdy.760","url":null,"abstract":"<p>Every organism is a model organism for understanding development, evolution, disease, and regeneration, and we have only begun to scratch the surface of the interdisciplinary genetic, molecular, cellular, and developmental mechanisms that regulate these biological processes. These “Highlights” denote exciting advances recently reported in <i>Developmental Dynamics</i> that illustrate the complex dynamics of developmental biology.</p><p><b>Ciliogenesis in Development and Disease</b> “Actin cytoskeletal regulation of ciliogenesis in development and disease” by Brittany Hufft-Martinez, Henry Wang, Irfan Saadi, and Pamela Tran; <i>Dev Dyn</i> 253:12, pp. 1076–1093. https://doi.org/10.1002/dvdy.724. Primary cilia are antenna-like sensory organelles, comprised of microtubule-based cellular projections, which serve both motile and non-motile sensory functions. Cilia are required for reproduction and regulate multiple cellular processes, including cell motility, cell cycle, cell differentiation, autophagy, and cell–cell communication. Their evolutionary conservation from algae to mammals, has informed our understanding of the basic biology of mammalian primary cilia, organismal development, and the genetic etiology of ciliopathies. This review discusses studies that have revealed the importance of regulating the actin cytoskeleton in ciliary homeostasis, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. It also highlights both conserved and divergent mechanisms in algae and mammalian cells. Finally, the authors compare the phenotypic manifestations of patients with ciliopathies, to those with mutations in actin and actin-associated genes and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie specific birth defects.</p><p><b>Organogenesis, Teeth, and Retinoic Acid</b> “Differential retinoic acid sensitivity of oral and pharyngeal teeth in medaka (<i>Oryzias latipes</i>) supports the importance of pouch–cleft contacts in pharyngeal tooth initiation” by Daria Loarinova and Ann Huysseune; <i>Dev Dyn</i> 253:12, pp. 1094–1105. https://doi.org/10.1002/dvdy.723. In early actinopterygian evolution, the dentition was widespread throughout the oropharynx, encompassing teeth on each pharyngeal arch. This wide distribution was reduced over time, as teeth were retained only on the most anterior and most posterior parts of the visceral skeleton, establishing an oral and a pharyngeal dentition, respectively. However, advanced teleost such as medaka, have retained both oral dentition and pharyngeal dentition, whereas less advanced teleosts such as zebrafish have lost oral dentition, retaining teeth exclusively on the last pharyngeal arch. Learn how previous studies claiming that pharyngeal teeth in medaka (<i>Oryzias latipes</i>) were induced independent of retinoic acid signaling unlike in zebrafish (<i>Danio rerio</i>) prompted the aut","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":"253 12","pages":"1074-1075"},"PeriodicalIF":2.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvdy.760","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: RhoA GTPases play critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, adhesion, migration and changes in cell shape, all required for cutaneous wound healing. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in skin keratinocytes and is decreased in the absence of interferon regulator factor 6, a critical regulator of cell proliferation, migration, and wound healing. However, the role for ARHGAP29 in keratinocyte biology is unknown.
Results: We generated ARHGAP29 knockdown keratinocyte cell lines and show they displayed increased filamentous actin, phospho-myosin regulatory light chain, cell area and population doubling time. Furthermore, we found that ARHGAP29 knockdown keratinocytes displayed significant delays in scratch wound closure in both single and collective cell migration conditions; these delays were rescued by both adding back ARHGAP29 or adding a ROCK inhibitor to ARHGAP29 knockdown cells. In vivo, however, Arhgap29 heterozygotes or keratinocyte-specific knockouts showed on-time wound healing.
Conclusions: These data demonstrate that ARHGAP29 is required for keratinocyte morphology, proliferation and migration in vitro but is dispensable during wound healing in vivo.
{"title":"ARHGAP29 promotes keratinocyte proliferation and migration in vitro and is dispensable for in vivo wound healing.","authors":"Lindsey Rhea, Tanner Reeb, Emily Adelizzi, Bailey Garnica, Allison Stein, Alexis Kollash, Elliot Dunnwald, Martine Dunnwald","doi":"10.1002/dvdy.759","DOIUrl":"10.1002/dvdy.759","url":null,"abstract":"<p><strong>Background: </strong>RhoA GTPases play critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, adhesion, migration and changes in cell shape, all required for cutaneous wound healing. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in skin keratinocytes and is decreased in the absence of interferon regulator factor 6, a critical regulator of cell proliferation, migration, and wound healing. However, the role for ARHGAP29 in keratinocyte biology is unknown.</p><p><strong>Results: </strong>We generated ARHGAP29 knockdown keratinocyte cell lines and show they displayed increased filamentous actin, phospho-myosin regulatory light chain, cell area and population doubling time. Furthermore, we found that ARHGAP29 knockdown keratinocytes displayed significant delays in scratch wound closure in both single and collective cell migration conditions; these delays were rescued by both adding back ARHGAP29 or adding a ROCK inhibitor to ARHGAP29 knockdown cells. In vivo, however, Arhgap29 heterozygotes or keratinocyte-specific knockouts showed on-time wound healing.</p><p><strong>Conclusions: </strong>These data demonstrate that ARHGAP29 is required for keratinocyte morphology, proliferation and migration in vitro but is dispensable during wound healing in vivo.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Neural crest cells (NCCs) are migratory embryonic stem cells that give rise to a diverse set of cell types. Here we describe the dynamic distribution of NCCs in developing embryos of the common wall lizard Podarcis muralis inferred from 10 markers. Our aim is to provide insights into the NCC development of lacertid lizards and to infer evolutionary modifications by comparisons to other tetrapods.
Results: NCC migration is ongoing at oviposition, following three streams in the head and multiple in the trunk. From 21ss, we observe expression patterns indicating the beginning of differentiation toward mesenchymal and neuronal fates. By 35ss, migration is restricted to caudal levels, and fully differentiated chromaffin cells are observed.
Conclusions: We find that some markers show patterns that differ from other tetrapods. For example, the antibody HNK-1 labels three NCC streams from the hindbrain while some comparable reptile studies describe four. However, the information emerging from all markers combined shows that the overall spatiotemporal distribution of NCCs in the common wall lizard is largely conserved with that of other tetrapods. Our study highlights the dynamic nature of seemingly canonical marker genes and provides the first description of spatiotemporal NCC dynamics in a lacertid lizard.
{"title":"Spatiotemporal distribution of neural crest cells in the common wall lizard Podarcis muralis.","authors":"Robin Pranter, Nathalie Feiner","doi":"10.1002/dvdy.758","DOIUrl":"10.1002/dvdy.758","url":null,"abstract":"<p><strong>Background: </strong>Neural crest cells (NCCs) are migratory embryonic stem cells that give rise to a diverse set of cell types. Here we describe the dynamic distribution of NCCs in developing embryos of the common wall lizard Podarcis muralis inferred from 10 markers. Our aim is to provide insights into the NCC development of lacertid lizards and to infer evolutionary modifications by comparisons to other tetrapods.</p><p><strong>Results: </strong>NCC migration is ongoing at oviposition, following three streams in the head and multiple in the trunk. From 21ss, we observe expression patterns indicating the beginning of differentiation toward mesenchymal and neuronal fates. By 35ss, migration is restricted to caudal levels, and fully differentiated chromaffin cells are observed.</p><p><strong>Conclusions: </strong>We find that some markers show patterns that differ from other tetrapods. For example, the antibody HNK-1 labels three NCC streams from the hindbrain while some comparable reptile studies describe four. However, the information emerging from all markers combined shows that the overall spatiotemporal distribution of NCCs in the common wall lizard is largely conserved with that of other tetrapods. Our study highlights the dynamic nature of seemingly canonical marker genes and provides the first description of spatiotemporal NCC dynamics in a lacertid lizard.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sameed Khan, May Shen, Aishwarya Bhurke, Adam Alessio, Ripla Arora
Background: Technical advances in whole tissue imaging and clearing have allowed 3D reconstruction of exocrine uterine glands deep-seated in the endometrium. However, there are limited gland structure analysis platforms to analyze these imaging data sets. Here, we present a pipeline for segmenting and analyzing uterine gland shape.
Results: Using our segmentation methodology, we derive metrics to describe gland length, shape, and branching patterns. We then quantify gland behavior with respect to organization around the embryo and proximity of each gland to the uterine lumen. We apply this image analysis pipeline to uterine glands at the peri-implantation time points of a mouse pregnancy. Our analysis reveals that at the time of embryo or egg entry into the uterus, glands show changes in length, tortuosity, and proximity to the uterine lumen while gland branch number stays the same. Eventually, these shape changes aid in reorganization of the glands around the embryo implantation site. We further apply our analysis pipeline to human and guinea pig uterine glands, extending feasibility to other mammalian species.
Conclusion: This work serves as a resource for researchers to extract quantitative and reproducible morphological features from three-dimensional uterine gland images to reveal insights about functional and structural patterns.
{"title":"Analysis pipeline to quantify uterine gland structural variations.","authors":"Sameed Khan, May Shen, Aishwarya Bhurke, Adam Alessio, Ripla Arora","doi":"10.1002/dvdy.757","DOIUrl":"https://doi.org/10.1002/dvdy.757","url":null,"abstract":"<p><strong>Background: </strong>Technical advances in whole tissue imaging and clearing have allowed 3D reconstruction of exocrine uterine glands deep-seated in the endometrium. However, there are limited gland structure analysis platforms to analyze these imaging data sets. Here, we present a pipeline for segmenting and analyzing uterine gland shape.</p><p><strong>Results: </strong>Using our segmentation methodology, we derive metrics to describe gland length, shape, and branching patterns. We then quantify gland behavior with respect to organization around the embryo and proximity of each gland to the uterine lumen. We apply this image analysis pipeline to uterine glands at the peri-implantation time points of a mouse pregnancy. Our analysis reveals that at the time of embryo or egg entry into the uterus, glands show changes in length, tortuosity, and proximity to the uterine lumen while gland branch number stays the same. Eventually, these shape changes aid in reorganization of the glands around the embryo implantation site. We further apply our analysis pipeline to human and guinea pig uterine glands, extending feasibility to other mammalian species.</p><p><strong>Conclusion: </strong>This work serves as a resource for researchers to extract quantitative and reproducible morphological features from three-dimensional uterine gland images to reveal insights about functional and structural patterns.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Every organism is a model organism for understanding development, evolution, disease, and regeneration, and we have only begun to scratch the surface of the interdisciplinary genetic, molecular, cellular, and developmental mechanisms that regulate these biological processes. These “Highlights” denote exciting advances recently reported in <i>Developmental Dynamics</i> that illustrate the complex dynamics of developmental biology.</p><p><b>Fat in Development and Disease</b> “Deciphering adipose development: Function, differentiation and regulation”, by Ge Guo, Wanli Wang, Mengjie Tu, Binbin Zhao, Jiayang Han, Jiali Li, Yanbing Pan, Jie Zhou, Wen Ma, Yi Liu, Tiantian Sun, Xu Han, and Yang An <i>DevDyn</i> 253:11, pp. 956–997. https://doi.org/10.1002/dvdy.708. Nearly 1 in every 8 humans worldwide are afflicted with obesity. That's more than 1 billion people. Characterized by excessive adiposity, obesity is a major risk factor for human diseases such as hypertension, osteoarthritis, diabetes and cancer. Adipose tissue, which is characterized as white adipose tissue, or brown adipose tissue, is located in subcutaneous and visceral regions and mainly composed of adipocytes. Excessive lipid accumulation is mediated by adipocyte hypertrophy (increase in adipocyte size) or adipocyte hyperplasia (increase in adipocyte number). During embryogenesis and adult homeostasis, adipogenesis is governed by many factors including hormones, cytokines, diet and even sex. This review provides a detailed description of adipose development, focusing on its origin, classification, distribution and function. Activating brown adipose tissue thermogenic activity and facilitating the conversion of white adipose tissue into beige adipose tissue is a promising strategy for antagonizing obesity but comes with side effects and risks. Therefore, preventing obesity without impairing adipose tissue function requires a deeper understanding of the molecular mechanisms that govern adipogenesis.</p><p><b>Body Plan Patterning and Segmentation</b> “Muscular remodeling and anteroposterior patterning during tapeworm segmentation” by Francesca Jarero, Andrew Baillie, Nick Riddiford, Jimena Montagne, Uriel Koziol and Peter Olson <i>DevDyn</i> 253:11, pp. 998–1023. https://doi.org/10.1002/dvdy.712. The evolution of segmentation is thought to have facilitated the efficient generation of repeat structural or anatomical units along the anterior-posterior axis of an organism. Considered a major evolutionary innovation, arthropods, annelids and chordates all possess segments, but whether or not these instances of segmentation are homologous, has remained contentious. Tapeworms are one of the oldest recognized forms of parasitic flatworms, and their segmented body plan that evolved independently, has historically confounded comparisons with other organisms. This study therefore investigated positional control gene expression in the neck region of the mouse bile-duct tapeworm <i>H. microstoma</i>.
"Miglė Kalvaitytė, Sofija Gabrilavičiūtė and Darius Balciunas DevDyn 253:11, pp. 1056-1065. https://doi.org/10.1002/dvdy.719。转座子是天然的 DNA 转移载体,能将外来 DNA 高效、精确地整合到基因组中。转座子可实现高种系传播率和单拷贝转基因整合。对斑马鱼简化基因修饰的需求日益增长,推动了 Tol2 转基因技术的重大进步。本研究描述了对标准 Tol2 介导的转基因方案的修改,即用标记有荧光报告基因的 Tol2 "竞争者 "载体稀释携带感兴趣转基因的载体,以进行反选择。这种方法减少了整合到斑马鱼基因组中的转基因盒的数量,从而可以在 F1 代中成功产生多个独立的单插入转基因品系。通过绕过多代育种的需要,这种改进的方法有可能减少动物用量并节省时间,同时还能提高单插入转基因品系的可重复性和分布。
{"title":"Editorial highlights","authors":"Paul A. Trainor","doi":"10.1002/dvdy.756","DOIUrl":"10.1002/dvdy.756","url":null,"abstract":"<p>Every organism is a model organism for understanding development, evolution, disease, and regeneration, and we have only begun to scratch the surface of the interdisciplinary genetic, molecular, cellular, and developmental mechanisms that regulate these biological processes. These “Highlights” denote exciting advances recently reported in <i>Developmental Dynamics</i> that illustrate the complex dynamics of developmental biology.</p><p><b>Fat in Development and Disease</b> “Deciphering adipose development: Function, differentiation and regulation”, by Ge Guo, Wanli Wang, Mengjie Tu, Binbin Zhao, Jiayang Han, Jiali Li, Yanbing Pan, Jie Zhou, Wen Ma, Yi Liu, Tiantian Sun, Xu Han, and Yang An <i>DevDyn</i> 253:11, pp. 956–997. https://doi.org/10.1002/dvdy.708. Nearly 1 in every 8 humans worldwide are afflicted with obesity. That's more than 1 billion people. Characterized by excessive adiposity, obesity is a major risk factor for human diseases such as hypertension, osteoarthritis, diabetes and cancer. Adipose tissue, which is characterized as white adipose tissue, or brown adipose tissue, is located in subcutaneous and visceral regions and mainly composed of adipocytes. Excessive lipid accumulation is mediated by adipocyte hypertrophy (increase in adipocyte size) or adipocyte hyperplasia (increase in adipocyte number). During embryogenesis and adult homeostasis, adipogenesis is governed by many factors including hormones, cytokines, diet and even sex. This review provides a detailed description of adipose development, focusing on its origin, classification, distribution and function. Activating brown adipose tissue thermogenic activity and facilitating the conversion of white adipose tissue into beige adipose tissue is a promising strategy for antagonizing obesity but comes with side effects and risks. Therefore, preventing obesity without impairing adipose tissue function requires a deeper understanding of the molecular mechanisms that govern adipogenesis.</p><p><b>Body Plan Patterning and Segmentation</b> “Muscular remodeling and anteroposterior patterning during tapeworm segmentation” by Francesca Jarero, Andrew Baillie, Nick Riddiford, Jimena Montagne, Uriel Koziol and Peter Olson <i>DevDyn</i> 253:11, pp. 998–1023. https://doi.org/10.1002/dvdy.712. The evolution of segmentation is thought to have facilitated the efficient generation of repeat structural or anatomical units along the anterior-posterior axis of an organism. Considered a major evolutionary innovation, arthropods, annelids and chordates all possess segments, but whether or not these instances of segmentation are homologous, has remained contentious. Tapeworms are one of the oldest recognized forms of parasitic flatworms, and their segmented body plan that evolved independently, has historically confounded comparisons with other organisms. This study therefore investigated positional control gene expression in the neck region of the mouse bile-duct tapeworm <i>H. microstoma</i>.","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":"253 11","pages":"954-955"},"PeriodicalIF":2.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvdy.756","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The branchial epithelium is one of the main tissues in which histone H3K4 trimethylation (H3K4me3) occurs in the budding tunicate, Polyandrocarpa misakiensis. It contains proliferating and undifferentiated cell aggregates at the bottom of each pharyngeal cleft, providing the nest for the adult stem cell niche. We examined the sustainable mechanism enabling epigenetic histone methylation in adult stem cells.
Results: Histone H3K4 demethylase (PmisKdm5) was not co-expressed in vivo with the transcription factor, signal transduction and activator of transcription (PmisStat) in the same cells. PmisStat mRNA, when electroporated into zooids, suppressed the gene expression of PmisKdm5 and facilitated the trimethylation of H3K4. A STAT5 inhibitor blocked the nuclear localization of PmisStat. It stimulated PmisKdm5 gene expression irrespective of PmisStat mRNA. The KDM5 inhibitor, CPI-455, stimulated H3K4me3 similarly to PmisStat mRNA. PmisStat mRNA and CPI-455 both induced the gene expression of PmisAp2 and PmisSp8, which were recently identified as budding/regeneration-related genes. When zooid tissues were treated with both CPI-455 and the STAT5 inhibitor, CPI-455 overwhelmed the effects of the STAT inhibitor on PmisAp2 and PmisSp8.
Conclusion: PmisStat is involved in epigenetic histone methylation at H3K4 through the inhibition of PmisKdm5. H3K4me3 affects downstream gene expression more directly and strongly than PmisStat.
{"title":"Stat stimulates histone H3K4 methylation via KDM5 inhibition in adult stem cells of budding tunicates.","authors":"Yuri Kimura-Nagano, Kanoko Kishimoto, Satoko Sekida, Kaz Kawamura","doi":"10.1002/dvdy.754","DOIUrl":"10.1002/dvdy.754","url":null,"abstract":"<p><strong>Background: </strong>The branchial epithelium is one of the main tissues in which histone H3K4 trimethylation (H3K4me3) occurs in the budding tunicate, Polyandrocarpa misakiensis. It contains proliferating and undifferentiated cell aggregates at the bottom of each pharyngeal cleft, providing the nest for the adult stem cell niche. We examined the sustainable mechanism enabling epigenetic histone methylation in adult stem cells.</p><p><strong>Results: </strong>Histone H3K4 demethylase (PmisKdm5) was not co-expressed in vivo with the transcription factor, signal transduction and activator of transcription (PmisStat) in the same cells. PmisStat mRNA, when electroporated into zooids, suppressed the gene expression of PmisKdm5 and facilitated the trimethylation of H3K4. A STAT5 inhibitor blocked the nuclear localization of PmisStat. It stimulated PmisKdm5 gene expression irrespective of PmisStat mRNA. The KDM5 inhibitor, CPI-455, stimulated H3K4me3 similarly to PmisStat mRNA. PmisStat mRNA and CPI-455 both induced the gene expression of PmisAp2 and PmisSp8, which were recently identified as budding/regeneration-related genes. When zooid tissues were treated with both CPI-455 and the STAT5 inhibitor, CPI-455 overwhelmed the effects of the STAT inhibitor on PmisAp2 and PmisSp8.</p><p><strong>Conclusion: </strong>PmisStat is involved in epigenetic histone methylation at H3K4 through the inhibition of PmisKdm5. H3K4me3 affects downstream gene expression more directly and strongly than PmisStat.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The eustachian tube (ET), a critical conduit connecting the middle ear and nasopharynx, is essential for normal middle ear function. However, it remains one of the least understood anatomical structures due to its complexity and the challenges of in vitro manipulation. Historically, these challenges have hindered research into the morphology and function development of the ET. This study elucidates the spatiotemporal relationship of ET morpho-functional maturation in mice, identifying key periods and factors that lay the theoretical foundation for exploring the molecular mechanisms of ET-related diseases.
Results: We comprehensively characterized the ET development in C57BL/6 mice from embryonic day (E) 12.5 to postnatal day (P) 30, focusing on the development of cilia, secretory cells, surrounding glands, and macrophages. Immunostaining identified the localization and secretion patterns of the mucins Muc5b and Muc5ac within the ET. Additionally, using improved ET function assessment tools, we evaluated the developmental features of ET mucociliary clearance and ventilation functions.
Conclusions: In C57BL/6 mice, E16.5 marks a critical period for middle ear cavity and ET formation. Muc5b plays a foundational role during early stages, while Muc5ac enhances function in later stages. During P7-11, despite morphological maturity, ET function remains underdeveloped but continues to improve with growth.
背景:咽鼓管(ET)是连接中耳和鼻咽部的重要通道,对中耳的正常功能至关重要。然而,由于其复杂性和体外操作的挑战性,咽鼓管仍然是人们了解最少的解剖结构之一。一直以来,这些挑战阻碍了对中耳形态和功能发展的研究。本研究阐明了小鼠ET形态和功能成熟的时空关系,确定了关键时期和因素,为探索ET相关疾病的分子机制奠定了理论基础:我们全面描述了C57BL/6小鼠从胚胎12.5天到出生后30天的ET发育过程,重点研究了纤毛、分泌细胞、周围腺体和巨噬细胞的发育。免疫染色确定了粘蛋白 Muc5b 和 Muc5ac 在 ET 中的定位和分泌模式。此外,我们还利用改进的ET功能评估工具,评估了ET粘液纤毛清除和通气功能的发育特征:结论:在 C57BL/6 小鼠中,E16.5 标志着中耳腔和 ET 形成的关键时期。Muc5b在早期阶段发挥基础作用,而Muc5ac则在后期阶段增强功能。在P7-11期间,尽管形态上已经成熟,但ET功能仍未发育完全,但会随着生长而继续改善。
{"title":"Spatiotemporal characteristics of eustachian tube development in C57BL/6 mice: Correlation between morphological and functional maturation.","authors":"Xuan Yu, Huimin Zhang, Hejie Li, Xingqian Shen, Wenting Yu, Ting Li, Xiaoye Chen, Shimin Zong, Hongjun Xiao","doi":"10.1002/dvdy.753","DOIUrl":"https://doi.org/10.1002/dvdy.753","url":null,"abstract":"<p><strong>Background: </strong>The eustachian tube (ET), a critical conduit connecting the middle ear and nasopharynx, is essential for normal middle ear function. However, it remains one of the least understood anatomical structures due to its complexity and the challenges of in vitro manipulation. Historically, these challenges have hindered research into the morphology and function development of the ET. This study elucidates the spatiotemporal relationship of ET morpho-functional maturation in mice, identifying key periods and factors that lay the theoretical foundation for exploring the molecular mechanisms of ET-related diseases.</p><p><strong>Results: </strong>We comprehensively characterized the ET development in C57BL/6 mice from embryonic day (E) 12.5 to postnatal day (P) 30, focusing on the development of cilia, secretory cells, surrounding glands, and macrophages. Immunostaining identified the localization and secretion patterns of the mucins Muc5b and Muc5ac within the ET. Additionally, using improved ET function assessment tools, we evaluated the developmental features of ET mucociliary clearance and ventilation functions.</p><p><strong>Conclusions: </strong>In C57BL/6 mice, E16.5 marks a critical period for middle ear cavity and ET formation. Muc5b plays a foundational role during early stages, while Muc5ac enhances function in later stages. During P7-11, despite morphological maturity, ET function remains underdeveloped but continues to improve with growth.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Eph receptors and ephrin ligands, the transmembrane proteins, function as a mechanism of communication between cells. Therefore, we intended to explore the expression array of EphB2 and EphB4 receptors and ephrin-B1 ligand in postnatal developing mouse epididymis during 1 day to 8 weeks using RT-PCR amplification and immunofluorescence staining.
Results: RT-PCR analysis indicated that the expression levels of EphB2, EphB4, and ephrin-B1 in the epididymis declined with the advancement of age during the initial phases of postnatal development and stayed relatively near to adult levels until 4 weeks. We discovered that the predominant compartments expressing EphB2/B4 and ephrin-B1 emerged in the excurrent duct epithelia of postnatal developing epididymis until 3 weeks. Consequently, even before spermatozoa reach the excurrent duct in epididymis, at the age of 3 weeks, the epididymal excurrent duct system exhibits characteristics similar to those of an adult in terms of expression of EphB2/B4 and ephrin-B1. Moreover, ephrin-B1 was expressed in epididymal epithelial cells throughout the development and EphB4 was expressed only in early postnatal stages while basal cells expressed EphB4 throughout the postnatal development.
Conclusion: The study represents the first expression analysis of ephrin-B1, EphB2, and EphB4 in the normal mouse epididymis during the postnatal development.
{"title":"EphB2, EphB4, and ephrin-B1 expression and localization in postnatal developing epididymis in mice.","authors":"Md Royhan Gofur, Kazushige Ogawa","doi":"10.1002/dvdy.752","DOIUrl":"https://doi.org/10.1002/dvdy.752","url":null,"abstract":"<p><strong>Background: </strong>Eph receptors and ephrin ligands, the transmembrane proteins, function as a mechanism of communication between cells. Therefore, we intended to explore the expression array of EphB2 and EphB4 receptors and ephrin-B1 ligand in postnatal developing mouse epididymis during 1 day to 8 weeks using RT-PCR amplification and immunofluorescence staining.</p><p><strong>Results: </strong>RT-PCR analysis indicated that the expression levels of EphB2, EphB4, and ephrin-B1 in the epididymis declined with the advancement of age during the initial phases of postnatal development and stayed relatively near to adult levels until 4 weeks. We discovered that the predominant compartments expressing EphB2/B4 and ephrin-B1 emerged in the excurrent duct epithelia of postnatal developing epididymis until 3 weeks. Consequently, even before spermatozoa reach the excurrent duct in epididymis, at the age of 3 weeks, the epididymal excurrent duct system exhibits characteristics similar to those of an adult in terms of expression of EphB2/B4 and ephrin-B1. Moreover, ephrin-B1 was expressed in epididymal epithelial cells throughout the development and EphB4 was expressed only in early postnatal stages while basal cells expressed EphB4 throughout the postnatal development.</p><p><strong>Conclusion: </strong>The study represents the first expression analysis of ephrin-B1, EphB2, and EphB4 in the normal mouse epididymis during the postnatal development.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The trigeminal nerve is the largest cranial nerve and functions in somatosensation. Cell bodies of this nerve are positioned in the trigeminal ganglion, which arises from the coalescence of neural crest and placode cells. While this dual cellular origin has been known for decades, the molecular mechanisms controlling trigeminal ganglion development remain obscure. We performed RNA sequencing on the forming chick trigeminal ganglion and identified Elongator acetyltransferase complex subunit 1 (Elp1) for further study. Mutations in ELP1 cause familial dysautonomia (FD), a fatal disorder characterized by the presence of smaller trigeminal nerves and sensory deficits. While Elp1 has established roles in neurogenesis, its function in placode cells during trigeminal gangliogenesis has not been investigated.
Results: To this end, we used morpholinos to deplete Elp1 from chick trigeminal placode cells. Elp1 knockdown decreased trigeminal ganglion size and led to aberrant innervation of the eye by placode-derived neurons. Trigeminal nerve branches also appeared to exhibit reduced axon outgrowth to target tissues.
Conclusions: These findings reveal a new role for Elp1 in placode-derived neurons during chick trigeminal ganglion development. These results have potential high significance to provide new insights into trigeminal ganglion development and the etiology of FD.
{"title":"Elp1 function in placode-derived neurons is critical for proper trigeminal ganglion development.","authors":"Margaret A Hines, Lisa A Taneyhill","doi":"10.1002/dvdy.749","DOIUrl":"10.1002/dvdy.749","url":null,"abstract":"<p><strong>Background: </strong>The trigeminal nerve is the largest cranial nerve and functions in somatosensation. Cell bodies of this nerve are positioned in the trigeminal ganglion, which arises from the coalescence of neural crest and placode cells. While this dual cellular origin has been known for decades, the molecular mechanisms controlling trigeminal ganglion development remain obscure. We performed RNA sequencing on the forming chick trigeminal ganglion and identified Elongator acetyltransferase complex subunit 1 (Elp1) for further study. Mutations in ELP1 cause familial dysautonomia (FD), a fatal disorder characterized by the presence of smaller trigeminal nerves and sensory deficits. While Elp1 has established roles in neurogenesis, its function in placode cells during trigeminal gangliogenesis has not been investigated.</p><p><strong>Results: </strong>To this end, we used morpholinos to deplete Elp1 from chick trigeminal placode cells. Elp1 knockdown decreased trigeminal ganglion size and led to aberrant innervation of the eye by placode-derived neurons. Trigeminal nerve branches also appeared to exhibit reduced axon outgrowth to target tissues.</p><p><strong>Conclusions: </strong>These findings reveal a new role for Elp1 in placode-derived neurons during chick trigeminal ganglion development. These results have potential high significance to provide new insights into trigeminal ganglion development and the etiology of FD.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}