{"title":"PEGylated liposomes for diagnosis of polyethylene glycol allergy","authors":"","doi":"10.1016/j.jaci.2024.03.030","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Polyethylene glycol (PEG) is a nonprotein polymer that is present in its native (unbound) form as an excipient in a range of products. It is increasingly being utilized clinically in the form of PEGylated liposomal medications and vaccines. PEG is the cause of anaphylaxis in a small percentage of drug reactions; however, diagnosis of PEG allergy is complicated by the variable and poor diagnostic performance of current skin testing protocols.</p></div><div><h3>Objective</h3><p>We assessed the diagnostic performance of PEGylated lipid medications as an alternative to currently described tests that use medications containing PEG excipients.</p></div><div><h3>Methods</h3><p>Nine patients with a strong history of PEG allergy were evaluated by skin testing with a panel of PEG-containing medications and with a PEGylated lipid nanoparticle vaccine (BNT162b2). Reactivity of basophils to unbound and liposomal PEG was assessed <em>ex vivo,</em> and specificity of basophil responses to PEGylated liposomes was investigated with a competitive inhibition assay. More detailed information is provided in this article’s Methods section in the Online Repository available at <span><span>www.jacionline.org</span><svg><path></path></svg></span>.</p></div><div><h3>Results</h3><p>Despite compelling histories of anaphylaxis to PEG-containing medications, only 2 (22%) of 9 patients were skin test positive for purified PEG or their index reaction-indicated PEG-containing compound. Conversely, all 9 patients were skin test positive or basophil activation test positive to PEGylated liposomal BNT162b2 vaccine. Concordantly, PEGylated liposomal drugs (BNT162b2 vaccine and PEGylated liposomal doxorubicin), but not purified PEG2000, consistently induced basophil activation <em>ex vivo</em> in patients with PEG allergy but not in nonallergic controls. Basophil reactivity to PEGylated nanoparticles competitively inhibited by preincubation of basophils with native PEG2000.</p></div><div><h3>Conclusion</h3><p>Presentation of PEG on the surface of a lipid nanoparticle increases its <em>in vivo</em> and <em>ex vivo</em> allergenicity, and improves diagnosis of PEG allergy.</p></div>","PeriodicalId":14936,"journal":{"name":"Journal of Allergy and Clinical Immunology","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0091674924004561/pdfft?md5=0a9be7609f69f77bbf336a0d9ec21ff6&pid=1-s2.0-S0091674924004561-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Allergy and Clinical Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091674924004561","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Polyethylene glycol (PEG) is a nonprotein polymer that is present in its native (unbound) form as an excipient in a range of products. It is increasingly being utilized clinically in the form of PEGylated liposomal medications and vaccines. PEG is the cause of anaphylaxis in a small percentage of drug reactions; however, diagnosis of PEG allergy is complicated by the variable and poor diagnostic performance of current skin testing protocols.
Objective
We assessed the diagnostic performance of PEGylated lipid medications as an alternative to currently described tests that use medications containing PEG excipients.
Methods
Nine patients with a strong history of PEG allergy were evaluated by skin testing with a panel of PEG-containing medications and with a PEGylated lipid nanoparticle vaccine (BNT162b2). Reactivity of basophils to unbound and liposomal PEG was assessed ex vivo, and specificity of basophil responses to PEGylated liposomes was investigated with a competitive inhibition assay. More detailed information is provided in this article’s Methods section in the Online Repository available at www.jacionline.org.
Results
Despite compelling histories of anaphylaxis to PEG-containing medications, only 2 (22%) of 9 patients were skin test positive for purified PEG or their index reaction-indicated PEG-containing compound. Conversely, all 9 patients were skin test positive or basophil activation test positive to PEGylated liposomal BNT162b2 vaccine. Concordantly, PEGylated liposomal drugs (BNT162b2 vaccine and PEGylated liposomal doxorubicin), but not purified PEG2000, consistently induced basophil activation ex vivo in patients with PEG allergy but not in nonallergic controls. Basophil reactivity to PEGylated nanoparticles competitively inhibited by preincubation of basophils with native PEG2000.
Conclusion
Presentation of PEG on the surface of a lipid nanoparticle increases its in vivo and ex vivo allergenicity, and improves diagnosis of PEG allergy.
期刊介绍:
The Journal of Allergy and Clinical Immunology is a prestigious publication that features groundbreaking research in the fields of Allergy, Asthma, and Immunology. This influential journal publishes high-impact research papers that explore various topics, including asthma, food allergy, allergic rhinitis, atopic dermatitis, primary immune deficiencies, occupational and environmental allergy, and other allergic and immunologic diseases. The articles not only report on clinical trials and mechanistic studies but also provide insights into novel therapies, underlying mechanisms, and important discoveries that contribute to our understanding of these diseases. By sharing this valuable information, the journal aims to enhance the diagnosis and management of patients in the future.