Quantitative morphological analysis framework of infant cranial sutures and fontanelles based on CT images

IF 1.8 3区 医学 Q2 ANATOMY & MORPHOLOGY Journal of Anatomy Pub Date : 2024-05-09 DOI:10.1111/joa.14056
Siyuan Chen, Svein Kleiven, Ingemar Thiblin, Xiaogai Li
{"title":"Quantitative morphological analysis framework of infant cranial sutures and fontanelles based on CT images","authors":"Siyuan Chen,&nbsp;Svein Kleiven,&nbsp;Ingemar Thiblin,&nbsp;Xiaogai Li","doi":"10.1111/joa.14056","DOIUrl":null,"url":null,"abstract":"<p>Characterizing the suture morphological variation is a crucial step to investigate the influence of sutures on infant head biomechanics. This study aimed to establish a comprehensive quantitative framework for accurately capturing the cranial suture and fontanelle morphologies in infants. A total of 69 CT scans of 2–4 month-old infant heads were segmented to identify semilandmarks at the borders of cranial sutures and fontanelles. Morphological characteristics, including length, width, sinuosity index (SI), and surface area, were measured. For this, an automatic method was developed to determine the junction points between sutures and fontanelles, and thin-plate-spline (TPS) was utilized for area calculation. Different dimensionality reduction methods were compared, including nonlinear and linear principal component analysis (PCA), as well as deep-learning-based variational autoencoder (VAE). Finally, the significance of various covariates was analyzed, and regression analysis was performed to establish a statistical model relating morphological parameters with global parameters. This study successfully developed a quantitative morphological framework and demonstrate its application in quantifying morphologies of infant sutures and fontanelles, which were shown to significantly relate to global parameters of cranial size, suture SI, and surface area for infants aged 2–4 months. The developed framework proved to be reliable and applicable in extracting infant suture morphology features from CT scans. The demonstrated application highlighted its potential to provide valuable insights into the morphologies of infant cranial sutures and fontanelles, aiding in the diagnosis of suture-related skull fractures. Infant suture, Infant fontanelle, Morphological variation, Morphology analysis framework, Statistical model.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/joa.14056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing the suture morphological variation is a crucial step to investigate the influence of sutures on infant head biomechanics. This study aimed to establish a comprehensive quantitative framework for accurately capturing the cranial suture and fontanelle morphologies in infants. A total of 69 CT scans of 2–4 month-old infant heads were segmented to identify semilandmarks at the borders of cranial sutures and fontanelles. Morphological characteristics, including length, width, sinuosity index (SI), and surface area, were measured. For this, an automatic method was developed to determine the junction points between sutures and fontanelles, and thin-plate-spline (TPS) was utilized for area calculation. Different dimensionality reduction methods were compared, including nonlinear and linear principal component analysis (PCA), as well as deep-learning-based variational autoencoder (VAE). Finally, the significance of various covariates was analyzed, and regression analysis was performed to establish a statistical model relating morphological parameters with global parameters. This study successfully developed a quantitative morphological framework and demonstrate its application in quantifying morphologies of infant sutures and fontanelles, which were shown to significantly relate to global parameters of cranial size, suture SI, and surface area for infants aged 2–4 months. The developed framework proved to be reliable and applicable in extracting infant suture morphology features from CT scans. The demonstrated application highlighted its potential to provide valuable insights into the morphologies of infant cranial sutures and fontanelles, aiding in the diagnosis of suture-related skull fractures. Infant suture, Infant fontanelle, Morphological variation, Morphology analysis framework, Statistical model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CT 图像的婴儿颅缝和囟门定量形态分析框架。
表征颅缝形态变化是研究颅缝对婴儿头部生物力学影响的关键步骤。本研究旨在建立一个全面的定量框架,以准确捕捉婴儿的颅缝和囟门形态。共对 69 份 2-4 个月大婴儿的头部 CT 扫描图像进行了分割,以确定颅缝和囟门边界的半标志。测量的形态特征包括长度、宽度、蜿蜒指数(SI)和表面积。为此,开发了一种自动方法来确定缝线和囟门之间的交界点,并利用薄板样条(TPS)来计算面积。比较了不同的降维方法,包括非线性和线性主成分分析(PCA),以及基于深度学习的变异自动编码器(VAE)。最后,分析了各种协变量的重要性,并通过回归分析建立了形态参数与全局参数相关的统计模型。本研究成功开发了一个定量形态学框架,并展示了其在婴儿缝合线和囟门形态定量中的应用,结果表明这些形态与 2-4 个月婴儿的颅骨大小、缝合线 SI 和表面积等总体参数有显著关系。事实证明,所开发的框架在从 CT 扫描中提取婴儿缝合线形态特征方面是可靠和适用的。所展示的应用凸显了该框架的潜力,可为了解婴儿颅缝和囟门的形态提供有价值的信息,从而帮助诊断与缝合相关的颅骨骨折。婴儿颅缝 婴儿囟门 形态变化 形态分析框架 统计模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Anatomy
Journal of Anatomy 医学-解剖学与形态学
CiteScore
4.80
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system. Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract. We particularly welcome submissions in the following areas: Cell biology and tissue architecture Comparative functional morphology Developmental biology Evolutionary developmental biology Evolutionary morphology Functional human anatomy Integrative vertebrate paleontology Methodological innovations in anatomical research Musculoskeletal system Neuroanatomy and neurodegeneration Significant advances in anatomical education.
期刊最新文献
Difference between sentinel and non-sentinel lymph nodes in the distribution of dendritic cells and macrophages: An immunohistochemical and morphometric study using gastric regional nodes obtained in sentinel node navigation surgery for early gastric cancer. Computed tomography analysis of the infraorbital canal and adjacent anatomical structures. Estimation of the Achilles tendon twist in vivo by individual triceps surae muscle stimulation. Functional anatomy of the wing muscles of the Egyptian fruit bat (Rousettus aegyptiacus) using dissection and diceCT. Hearing abilities of a late-surviving archaeocete (Cetacea: Kekenodontidae), and implications for the evolution of sound in Neoceti.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1