All-optical subcycle microscopy on atomic length scales

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-05-08 DOI:10.1038/s41586-024-07355-7
T. Siday, J. Hayes, F. Schiegl, F. Sandner, P. Menden, V. Bergbauer, M. Zizlsperger, S. Nerreter, S. Lingl, J. Repp, J. Wilhelm, M. A. Huber, Y. A. Gerasimenko, R. Huber
{"title":"All-optical subcycle microscopy on atomic length scales","authors":"T. Siday, J. Hayes, F. Schiegl, F. Sandner, P. Menden, V. Bergbauer, M. Zizlsperger, S. Nerreter, S. Lingl, J. Repp, J. Wilhelm, M. A. Huber, Y. A. Gerasimenko, R. Huber","doi":"10.1038/s41586-024-07355-7","DOIUrl":null,"url":null,"abstract":"Bringing optical microscopy to the shortest possible length and time scales has been a long-sought goal, connecting nanoscopic elementary dynamics with the macroscopic functionalities of condensed matter. Super-resolution microscopy has circumvented the far-field diffraction limit by harnessing optical nonlinearities1. By exploiting linear interaction with tip-confined evanescent light fields2, near-field microscopy3,4 has reached even higher resolution, prompting a vibrant research field by exploring the nanocosm in motion5–19. Yet the finite radius of the nanometre-sized tip apex has prevented access to atomic resolution20. Here we leverage extreme atomic nonlinearities within tip-confined evanescent fields to push all-optical microscopy to picometric spatial and femtosecond temporal resolution. On these scales, we discover an unprecedented and efficient non-classical near-field response, in phase with the vector potential of light and strictly confined to atomic dimensions. This ultrafast signal is characterized by an optical phase delay of approximately π/2 and facilitates direct monitoring of tunnelling dynamics. We showcase the power of our optical concept by imaging nanometre-sized defects hidden to atomic force microscopy and by subcycle sampling of current transients on a semiconducting van der Waals material. Our results facilitate access to quantum light–matter interaction and electronic dynamics at ultimately short spatio-temporal scales in both conductive and insulating quantum materials. All-optical subcycle microscopy is achieved on atomic length scales, with picometric spatial and femtosecond temporal resolution.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"629 8011","pages":"329-334"},"PeriodicalIF":50.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07355-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bringing optical microscopy to the shortest possible length and time scales has been a long-sought goal, connecting nanoscopic elementary dynamics with the macroscopic functionalities of condensed matter. Super-resolution microscopy has circumvented the far-field diffraction limit by harnessing optical nonlinearities1. By exploiting linear interaction with tip-confined evanescent light fields2, near-field microscopy3,4 has reached even higher resolution, prompting a vibrant research field by exploring the nanocosm in motion5–19. Yet the finite radius of the nanometre-sized tip apex has prevented access to atomic resolution20. Here we leverage extreme atomic nonlinearities within tip-confined evanescent fields to push all-optical microscopy to picometric spatial and femtosecond temporal resolution. On these scales, we discover an unprecedented and efficient non-classical near-field response, in phase with the vector potential of light and strictly confined to atomic dimensions. This ultrafast signal is characterized by an optical phase delay of approximately π/2 and facilitates direct monitoring of tunnelling dynamics. We showcase the power of our optical concept by imaging nanometre-sized defects hidden to atomic force microscopy and by subcycle sampling of current transients on a semiconducting van der Waals material. Our results facilitate access to quantum light–matter interaction and electronic dynamics at ultimately short spatio-temporal scales in both conductive and insulating quantum materials. All-optical subcycle microscopy is achieved on atomic length scales, with picometric spatial and femtosecond temporal resolution.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子长度尺度上的全光学亚周期显微镜。
将光学显微技术应用到尽可能短的长度和时间尺度一直是人们孜孜以求的目标,它将纳米基本动力学与凝聚态物质的宏观功能联系在一起。超分辨率显微镜利用光学非线性绕过了远场衍射极限1。近场显微镜3,4 利用与尖端封闭的蒸发光场2 的线性相互作用,达到了更高的分辨率,通过探索运动中的纳米宇宙5-19 催生了一个充满活力的研究领域。然而,纳米尺寸的尖端顶点半径有限,无法达到原子分辨率20。在这里,我们利用尖端封闭的蒸发场中的极端原子非线性,将全光学显微镜的空间分辨率提高到皮米级,时间分辨率提高到飞秒级。在这些尺度上,我们发现了一种前所未有的高效非经典近场响应,它与光的矢量势相位一致,并严格限制在原子尺寸内。这种超快信号的光学相位延迟约为π/2,有利于直接监测隧道动力学。我们通过对隐藏在原子力显微镜下的纳米级缺陷进行成像,以及对半导体范德华材料上的电流瞬态进行子周期采样,展示了我们的光学概念的强大功能。我们的成果有助于在导电和绝缘量子材料中以极短的时空尺度获取量子光-物质相互作用和电子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Fate of pistachio production in Iran holds lessons for the world Alcohol and cancer risk: what you need to know An organ that stores red blood cells for emergencies How a vast digital twin of the Yangtze River could prevent flooding in China COP30 must deliver binding mechanisms to address climate change, not empty promises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1