Keiron P.P. Fraser , Lloyd S. Peck , Melody S. Clark , Andrew Clarke
{"title":"A comparative study of tissue protein synthesis rates in an Antarctic, Harpagifer antarcticus and a temperate, Lipophrys pholis teleost","authors":"Keiron P.P. Fraser , Lloyd S. Peck , Melody S. Clark , Andrew Clarke","doi":"10.1016/j.cbpa.2024.111650","DOIUrl":null,"url":null,"abstract":"<div><p>The affect of temperature on tissue protein synthesis rates has been reported in temperate and tropical, but not Antarctic fishes. Previous studies have generally demonstrated low growth rates in Antarctic fish species in comparison to temperate relatives and elevated levels of protein turnover. This study investigates how low temperatures effect tissue protein synthesis and hence tissue growth in a polar fish species. Groups of Antarctic, <em>Harpagifer antarcticus</em> and temperate, <em>Lipophrys pholis</em>, were acclimated to a range of overlapping water temperatures and protein synthesis was measure in white muscle (WM), liver and gastrointestinal tract (GIT). WM protein synthesis rates increased linearly with temperature in both species (<em>H. antarcticus</em> 0.16–0.23%.d<sup>−1</sup>, <em>L. pholis</em>, 0.31–0.76%.d<sup>−1</sup>), while liver (<em>H. antarcticus</em> 0.24–0.27%.d<sup>−1</sup>, <em>L. pholis</em>, 0.44–1.03%.d<sup>−1</sup>) and GIT were unaffected by temperature in <em>H. antarcticus</em> but increased non-linearly in <em>L.</em> <em>pholis</em> (<em>H. antarcticus</em> 0.22–0.26%.d<sup>−1</sup>, <em>L. pholis</em>, 0.40–0.86%.d<sup>−1</sup>). RNA to protein ratios were unaffected by temperature in <em>H. antarcticus</em> but increased weakly, in <em>L.</em> <em>pholis</em> WM and liver. In <em>L.</em> <em>pholis</em>, RNA translational efficiency increased significantly with temperature in all tissues, but only in liver in <em>H. antarcticus</em>. At the overlapping temperature of 3 °C, protein synthesis (WM 26%, Liver, 39%, GIT, 35%) and RNA translational efficiency (WM 273%, Liver, 271%, GIT, 300%) were significantly lower in <em>H. antarcticus</em> than <em>L.</em> <em>pholis</em>, while RNA to protein ratios were significantly higher (WM 270%, Liver 170%, GIT 186%). Tissue specific effects of temperature are detectable in both species. This study provides the first evidence, that tissue protein synthesis rates are constrained in Antarctic fishes.</p></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"295 ","pages":"Article 111650"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1095643324000771/pdfft?md5=5764dea6ca5fd775defc779c50d80936&pid=1-s2.0-S1095643324000771-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324000771","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The affect of temperature on tissue protein synthesis rates has been reported in temperate and tropical, but not Antarctic fishes. Previous studies have generally demonstrated low growth rates in Antarctic fish species in comparison to temperate relatives and elevated levels of protein turnover. This study investigates how low temperatures effect tissue protein synthesis and hence tissue growth in a polar fish species. Groups of Antarctic, Harpagifer antarcticus and temperate, Lipophrys pholis, were acclimated to a range of overlapping water temperatures and protein synthesis was measure in white muscle (WM), liver and gastrointestinal tract (GIT). WM protein synthesis rates increased linearly with temperature in both species (H. antarcticus 0.16–0.23%.d−1, L. pholis, 0.31–0.76%.d−1), while liver (H. antarcticus 0.24–0.27%.d−1, L. pholis, 0.44–1.03%.d−1) and GIT were unaffected by temperature in H. antarcticus but increased non-linearly in L.pholis (H. antarcticus 0.22–0.26%.d−1, L. pholis, 0.40–0.86%.d−1). RNA to protein ratios were unaffected by temperature in H. antarcticus but increased weakly, in L.pholis WM and liver. In L.pholis, RNA translational efficiency increased significantly with temperature in all tissues, but only in liver in H. antarcticus. At the overlapping temperature of 3 °C, protein synthesis (WM 26%, Liver, 39%, GIT, 35%) and RNA translational efficiency (WM 273%, Liver, 271%, GIT, 300%) were significantly lower in H. antarcticus than L.pholis, while RNA to protein ratios were significantly higher (WM 270%, Liver 170%, GIT 186%). Tissue specific effects of temperature are detectable in both species. This study provides the first evidence, that tissue protein synthesis rates are constrained in Antarctic fishes.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.