EBMGC-GNF: Efficient Balanced Multi-View Graph Clustering via Good Neighbor Fusion.

Danyang Wu, Zhenkun Yang, Jitao Lu, Jin Xu, Xiangmin Xu, Feiping Nie
{"title":"EBMGC-GNF: Efficient Balanced Multi-View Graph Clustering via Good Neighbor Fusion.","authors":"Danyang Wu, Zhenkun Yang, Jitao Lu, Jin Xu, Xiangmin Xu, Feiping Nie","doi":"10.1109/TPAMI.2024.3398220","DOIUrl":null,"url":null,"abstract":"<p><p>Exploiting consistent structure from multiple graphs is vital for multi-view graph clustering. To achieve this goal, we propose an Efficient Balanced Multi-view Graph Clustering via Good Neighbor Fusion (EBMGC-GNF) model which comprehensively extracts credible consistent neighbor information from multiple views by designing a Cross-view Good Neighbors Voting module. Moreover, a novel balanced regularization term based on p-power function is introduced to adjust the balance property of clusters, which helps the model adapt to data with different distributions. To solve the optimization problem of EBMGC-GNF, we transform EBMGC-GNF into an efficient form with graph coarsening method and optimize it based on accelareted coordinate descent algorithm. In experiments, extensive results demonstrate that, in the majority of scenarios, our proposals outperform state-of-the-art methods in terms of both effectiveness and efficiency.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3398220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exploiting consistent structure from multiple graphs is vital for multi-view graph clustering. To achieve this goal, we propose an Efficient Balanced Multi-view Graph Clustering via Good Neighbor Fusion (EBMGC-GNF) model which comprehensively extracts credible consistent neighbor information from multiple views by designing a Cross-view Good Neighbors Voting module. Moreover, a novel balanced regularization term based on p-power function is introduced to adjust the balance property of clusters, which helps the model adapt to data with different distributions. To solve the optimization problem of EBMGC-GNF, we transform EBMGC-GNF into an efficient form with graph coarsening method and optimize it based on accelareted coordinate descent algorithm. In experiments, extensive results demonstrate that, in the majority of scenarios, our proposals outperform state-of-the-art methods in terms of both effectiveness and efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EBMGC-GNF:通过好邻居融合实现高效平衡多视图图聚类。
利用多图的一致结构对多视图聚类至关重要。为了实现这一目标,我们提出了通过好邻居融合的高效平衡多视图图聚类(EBMGC-GNF)模型,该模型通过设计跨视图好邻居投票模块,从多个视图中全面提取可信的一致邻居信息。此外,该模型还引入了基于 p-power 函数的新型平衡正则化项来调整聚类的平衡属性,从而帮助模型适应不同分布的数据。为了解决 EBMGC-GNF 的优化问题,我们用图粗化方法将 EBMGC-GNF 转换为高效形式,并基于加速坐标下降算法对其进行优化。在实验中,大量结果表明,在大多数情况下,我们的建议在有效性和效率方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EBMGC-GNF: Efficient Balanced Multi-View Graph Clustering via Good Neighbor Fusion. Integrating Neural-Symbolic Reasoning With Variational Causal Inference Network for Explanatory Visual Question Answering. Motion-Aware Dynamic Graph Neural Network for Video Compressive Sensing. Evaluation Metrics for Intelligent Generation of Graphical Game Assets: A Systematic Survey-Based Framework. Artificial Intelligence and Machine Learning Tools for Improving Early Warning Systems of Volcanic Eruptions: The Case of Stromboli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1