Jiaxiang You, Xiaoxi Li, Jun Xia, Haopeng Li, Jun Wang
{"title":"Hypoperfusion Intensity Ratio and Hemorrhagic Transformation in Patients with Successful Recanalization after Thrombectomy.","authors":"Jiaxiang You, Xiaoxi Li, Jun Xia, Haopeng Li, Jun Wang","doi":"10.3174/ajnr.A8329","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Hemorrhagic transformation remains a potentially devastating complication of acute ischemic stroke. We aimed to evaluate whether the hypoperfusion intensity ratio, a parameter derived from CT perfusion imaging, is associated with the development of hemorrhagic transformation in patients with anterior large-artery occlusion who had undergone thrombectomy.</p><p><strong>Materials and methods: </strong>We retrospectively reviewed data from patients with consecutive acute ischemic strokes who had achieved successful recanalization (Thrombolysis in Cerebral Infarction score ≥2b) between January 2020 and December 2023. HIR was defined as the ratio of the volume of lesions with a time-to-maximum (Tmax) >6 seconds to those with a Tmax >10 second delay. The primary outcome, based on the European Cooperative Acute Stroke Study, was hemorrhagic transformation, diagnosed by follow-up imaging assessment in 24-hour windows, and radiologically classified as hemorrhagic infarction and parenchymal hematoma. The secondary outcome was a 3-month mRS score of ≥3.</p><p><strong>Results: </strong>Among 168 patients, 35 of 168 developed hemorrhagic transformation; 14 of 168 developed hemorrhagic infarction, and 21 of 168 developed parenchymal hematoma PH. After adjusting the latent covariates, increased hypoperfusion intensity ratio (per 0.1, adjusted OR [aOR] 1.68, 95% CI 1.26-2.25), ASPECTS (aOR 0.44, 95% CI 0.27-0.72), onset-to-puncture (aOR 1.01, 95% CI 1.00-1.02), and cardioembolism (aOR 5.6, 95% CI 1.59-19.7) were associated with hemorrhagic transformation in multivariable regression. The receiver operating characteristic curve indicated that hypoperfusion intensity ratio can predict hemorrhagic transformation accurately (area under the curve = 0.81; 95% CI, 0.738-0.882; <i>P</i> < .001) and predict parenchymal hematoma (area under the curve = 0.801; 95% CI, 0.727-0.875; <i>P</i> < .001).</p><p><strong>Conclusions: </strong>Upon admission, hypoperfusion intensity ratio, an imaging parameter, predicted hemorrhagic transformation after reperfusion therapy in this patient population.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":"1475-1481"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Hemorrhagic transformation remains a potentially devastating complication of acute ischemic stroke. We aimed to evaluate whether the hypoperfusion intensity ratio, a parameter derived from CT perfusion imaging, is associated with the development of hemorrhagic transformation in patients with anterior large-artery occlusion who had undergone thrombectomy.
Materials and methods: We retrospectively reviewed data from patients with consecutive acute ischemic strokes who had achieved successful recanalization (Thrombolysis in Cerebral Infarction score ≥2b) between January 2020 and December 2023. HIR was defined as the ratio of the volume of lesions with a time-to-maximum (Tmax) >6 seconds to those with a Tmax >10 second delay. The primary outcome, based on the European Cooperative Acute Stroke Study, was hemorrhagic transformation, diagnosed by follow-up imaging assessment in 24-hour windows, and radiologically classified as hemorrhagic infarction and parenchymal hematoma. The secondary outcome was a 3-month mRS score of ≥3.
Results: Among 168 patients, 35 of 168 developed hemorrhagic transformation; 14 of 168 developed hemorrhagic infarction, and 21 of 168 developed parenchymal hematoma PH. After adjusting the latent covariates, increased hypoperfusion intensity ratio (per 0.1, adjusted OR [aOR] 1.68, 95% CI 1.26-2.25), ASPECTS (aOR 0.44, 95% CI 0.27-0.72), onset-to-puncture (aOR 1.01, 95% CI 1.00-1.02), and cardioembolism (aOR 5.6, 95% CI 1.59-19.7) were associated with hemorrhagic transformation in multivariable regression. The receiver operating characteristic curve indicated that hypoperfusion intensity ratio can predict hemorrhagic transformation accurately (area under the curve = 0.81; 95% CI, 0.738-0.882; P < .001) and predict parenchymal hematoma (area under the curve = 0.801; 95% CI, 0.727-0.875; P < .001).
Conclusions: Upon admission, hypoperfusion intensity ratio, an imaging parameter, predicted hemorrhagic transformation after reperfusion therapy in this patient population.