Determination of Chemical Oxygen Demand with electrochemical methods: A review

IF 5.5 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Advances Pub Date : 2024-05-04 DOI:10.1016/j.ceja.2024.100615
Samira Lambertz , Marcus Franke , Michael Stelter , Patrick Braeutigam
{"title":"Determination of Chemical Oxygen Demand with electrochemical methods: A review","authors":"Samira Lambertz ,&nbsp;Marcus Franke ,&nbsp;Michael Stelter ,&nbsp;Patrick Braeutigam","doi":"10.1016/j.ceja.2024.100615","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical determination of chemical oxygen demand (COD) presents a promising alternative to the standard method, addressing concerns related to toxic chemicals, extended measurement time, and automation challenges. This review aims to comprehensively examine the current state of research and offer insights for future advancements. The discussion spans three key areas: working electrode materials (including Cu-based, carbon-based, Boron-Doped Diamond (BDD), and PbO<sub>2</sub>), electrochemical methods (amperometry, coulometry, and voltammetry), and measurement setups. Special emphasis is placed on exploring the dependencies of the amperometric method on organic compounds and discerning the distinct application scopes of various electrochemical methods. Future perspectives are outlined for each research aspect. The review also delves into the evaluation of developed methods, proposing measures for a more standardized and cohesive evaluation approach. Through these efforts, the review seeks to propel research towards the practical application of electrochemical COD determination.</p></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666821124000334/pdfft?md5=a68164bbce82a42fb8620bd06377d9c4&pid=1-s2.0-S2666821124000334-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical determination of chemical oxygen demand (COD) presents a promising alternative to the standard method, addressing concerns related to toxic chemicals, extended measurement time, and automation challenges. This review aims to comprehensively examine the current state of research and offer insights for future advancements. The discussion spans three key areas: working electrode materials (including Cu-based, carbon-based, Boron-Doped Diamond (BDD), and PbO2), electrochemical methods (amperometry, coulometry, and voltammetry), and measurement setups. Special emphasis is placed on exploring the dependencies of the amperometric method on organic compounds and discerning the distinct application scopes of various electrochemical methods. Future perspectives are outlined for each research aspect. The review also delves into the evaluation of developed methods, proposing measures for a more standardized and cohesive evaluation approach. Through these efforts, the review seeks to propel research towards the practical application of electrochemical COD determination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用电化学方法测定化学需氧量:综述
电化学法测定化学需氧量 (COD) 是一种很有前途的替代标准方法,可以解决与有毒化学品、测量时间延长和自动化挑战有关的问题。本综述旨在全面考察研究现状,并为未来的进步提供见解。讨论涵盖三个关键领域:工作电极材料(包括铜基、碳基、掺硼金刚石 (BDD) 和二氧化铅)、电化学方法(安培法、库仑法和伏安法)以及测量设置。重点是探讨安培法对有机化合物的依赖性,以及各种电化学方法的不同应用范围。每个研究方面都概述了未来的展望。本综述还深入探讨了对已开发方法的评估,提出了采用更标准化、更具凝聚力的评估方法的措施。通过这些努力,综述力图推动电化学化学需氧量测定的实际应用研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
期刊最新文献
Enhanced cycling stability of silicon electrode for lithium-ion batteries by dual hydrogen bonding mediated by carboxylated carbon nanotube Microwave-assisted acid and alkali pretreatment of Napier grass for enhanced biohydrogen production and integrated biorefinery potential Innovative solar-assisted direct contact membrane distillation system: Dynamic modeling and performance analysis Enhancement of H2-water mass transfer using methyl-modified hollow mesoporous silica nanoparticles for efficient microbial CO2 reduction Enhancing photovoltaic cell design with multilayer sequential neural networks: A study on neodymium-doped ZnO nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1