Synthesis, characterization, and implementation of BaNiO3 perovskite nanoparticles as thin film supercapacitor electrode

Energy Storage Pub Date : 2024-05-08 DOI:10.1002/est2.630
Abdul Niqash Janjua, Aamir Ahmed, Anoop Singh, Ashok K. Sundramoorthy, Sheng-Joue Young, Yen-Lin Chu, Sandeep Arya
{"title":"Synthesis, characterization, and implementation of BaNiO3 perovskite nanoparticles as thin film supercapacitor electrode","authors":"Abdul Niqash Janjua,&nbsp;Aamir Ahmed,&nbsp;Anoop Singh,&nbsp;Ashok K. Sundramoorthy,&nbsp;Sheng-Joue Young,&nbsp;Yen-Lin Chu,&nbsp;Sandeep Arya","doi":"10.1002/est2.630","DOIUrl":null,"url":null,"abstract":"<p>This work is the first attempt to explore the supercapacitor applications of Barium nickelate (BaNiO<sub>3</sub>) perovskite nanoparticles. The nanoparticles are synthesized using a simple combustion method and their morphology, elemental composition, and so forth are studied using standard characterization methods such as x-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and so forth. The nanoparticles were found to be hexagonal in shape, with an average particle size of 16 nm, and the elemental analysis confirms the successful synthesis of the BaNiO<sub>3</sub> perovskite nanoparticles. For electrochemical studies, the electrodes are fabricated over a wearable and flexible conductive fabric (CF) substrate. A slurry paste of the synthesized BaNiO<sub>3</sub> nanoparticles is applied over CF and dried overnight, thereby forming a thin film electrode. The fabricated electrode acts as a positive electrode with a high specific capacitance of 508.64 F g<sup>−1</sup> at 2.2 A g<sup>−1</sup> current density. Upon increasing the current density, the electrode maintains 60% of its specific capacitance and displays 97% cyclic stability over 5000 cycles. The electrochemical impedance spectroscopy (EIS) study indicates excellent conductivity of the electrode, with a bulk resistance of 3.2 Ohms. The electrochemical performance of the fabricated electrode is also compared with various previously reported works and the electrode displays higher specific capacitance and better cyclic stability. These findings suggest that the BaNiO<sub>3</sub> perovskite nanoparticles-based electrode holds promise for utilization as an anode material in supercapacitor applications.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work is the first attempt to explore the supercapacitor applications of Barium nickelate (BaNiO3) perovskite nanoparticles. The nanoparticles are synthesized using a simple combustion method and their morphology, elemental composition, and so forth are studied using standard characterization methods such as x-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and so forth. The nanoparticles were found to be hexagonal in shape, with an average particle size of 16 nm, and the elemental analysis confirms the successful synthesis of the BaNiO3 perovskite nanoparticles. For electrochemical studies, the electrodes are fabricated over a wearable and flexible conductive fabric (CF) substrate. A slurry paste of the synthesized BaNiO3 nanoparticles is applied over CF and dried overnight, thereby forming a thin film electrode. The fabricated electrode acts as a positive electrode with a high specific capacitance of 508.64 F g−1 at 2.2 A g−1 current density. Upon increasing the current density, the electrode maintains 60% of its specific capacitance and displays 97% cyclic stability over 5000 cycles. The electrochemical impedance spectroscopy (EIS) study indicates excellent conductivity of the electrode, with a bulk resistance of 3.2 Ohms. The electrochemical performance of the fabricated electrode is also compared with various previously reported works and the electrode displays higher specific capacitance and better cyclic stability. These findings suggest that the BaNiO3 perovskite nanoparticles-based electrode holds promise for utilization as an anode material in supercapacitor applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为薄膜超级电容器电极的 BaNiO3 包晶体纳米粒子的合成、表征和应用
本研究首次尝试探索镍酸钡(BaNiO3)包晶石纳米粒子的超级电容器应用。采用简单的燃烧法合成了纳米粒子,并使用 X 射线衍射光谱(XRD)、场发射扫描电子显微镜(FESEM)等标准表征方法研究了纳米粒子的形态、元素组成等。结果发现,纳米粒子呈六角形,平均粒径为 16 nm,元素分析证实成功合成了 BaNiO3 包晶体纳米粒子。在电化学研究中,电极是在可穿戴的柔性导电织物(CF)基底上制作的。将合成的 BaNiO3 纳米粒子浆糊涂抹在 CF 上并干燥过夜,从而形成薄膜电极。制成的电极作为正极,在 2.2 A g-1 电流密度下具有 508.64 F g-1 的高比电容。提高电流密度后,电极仍能保持 60% 的比电容,在 5000 次循环中显示出 97% 的循环稳定性。电化学阻抗谱(EIS)研究表明,该电极具有出色的导电性,体积电阻为 3.2 欧姆。制备电极的电化学性能还与之前报道的各种作品进行了比较,结果显示该电极具有更高的比电容和更好的循环稳定性。这些研究结果表明,基于 BaNiO3 包晶体纳米粒子的电极有望用作超级电容器应用中的阳极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
An Innovative Energy Storage System Based on Phase Change Material and Solar Energy Integrated With an Air Handling Unit to Produce Heating and Cooling Performance Analysis of a Renewable-Powered Multi-Gas Floating Storage and Regasification Facility for Ammonia Vessels With Reconversion to Hydrogen The Solid-State Battery Applicational Technology: Material Characteristics and Charge–Discharge Mechanisms of Iron Chloride Electrodes Hydrogen Storage Studies of Nanocomposites Derived From O-Ethyl-S-((5-Methoxy-1H-Benzo[d]Imidazol-2-Yl)Carbonothioate (OESMBIC) With ZnO and TiO2 Nanoparticles Performance Enhancement of Solar Still Couples With Solar Water Heater by Using Different PCM's and Nanoparticle Combinations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1