首页 > 最新文献

Energy Storage最新文献

英文 中文
Performance Optimization of Double U-Tube Borehole Heat Exchanger for Thermal Energy Storage
Pub Date : 2025-02-19 DOI: 10.1002/est2.70145
Esa Dube Kerme, Alan S. Fung, M. Ziad Saghir

This paper presents an optimization study of the thermal performance of a double U-tube borehole heat exchanger (BHE) with two independent circuits that can be used in borehole thermal energy storage. The study applies the Taguchi method and utility concept to obtain the optimum parameters for two objective functions: maximum heat transfer rate and thermal effectiveness of the BHE. A validated numerical heat transfer model with a fully implicit method is applied to compute the transient heat transfer in the BHE. The Taguchi optimization results revealed that the optimal factors (denoted with letters and numbers showing their levels) for achieving the maximum heat transfer rate and thermal effectiveness are A1B3C2D1E3F3G3H3 and A3B3C2D3E3F3G1H1, respectively. This resulted in an optimal heat transfer rate of 120 W/m and a thermal effectiveness of 69.3%. Using the utility concept method, a single set of optimal parameters (denoted by their levels as A3B3C3D2E3F3G2H3) is obtained to maximize the performance of the BHE. These parameters yielded an optimum heat transfer rate of 87.3 W/m and thermal effectiveness of 54.6%. Finally, analysis of variance (ANOVA) showed that ground thermal conductivity, the inlet temperature of the working fluid, and borehole depth are the most influential parameters affecting the performance of the BHE. The study provides crucial information for performance improvement, enhanced energy savings, reduced environmental impact, and optimization of a hybrid ground source heat pump system that can be integrated with borehole thermal energy storage.

{"title":"Performance Optimization of Double U-Tube Borehole Heat Exchanger for Thermal Energy Storage","authors":"Esa Dube Kerme,&nbsp;Alan S. Fung,&nbsp;M. Ziad Saghir","doi":"10.1002/est2.70145","DOIUrl":"https://doi.org/10.1002/est2.70145","url":null,"abstract":"<p>This paper presents an optimization study of the thermal performance of a double U-tube borehole heat exchanger (BHE) with two independent circuits that can be used in borehole thermal energy storage. The study applies the Taguchi method and utility concept to obtain the optimum parameters for two objective functions: maximum heat transfer rate and thermal effectiveness of the BHE. A validated numerical heat transfer model with a fully implicit method is applied to compute the transient heat transfer in the BHE. The Taguchi optimization results revealed that the optimal factors (denoted with letters and numbers showing their levels) for achieving the maximum heat transfer rate and thermal effectiveness are A<sub>1</sub>B<sub>3</sub>C<sub>2</sub>D<sub>1</sub>E<sub>3</sub>F<sub>3</sub>G<sub>3</sub>H<sub>3</sub> and A<sub>3</sub>B<sub>3</sub>C<sub>2</sub>D<sub>3</sub>E<sub>3</sub>F<sub>3</sub>G<sub>1</sub>H<sub>1</sub>, respectively. This resulted in an optimal heat transfer rate of 120 W/m and a thermal effectiveness of 69.3%. Using the utility concept method, a single set of optimal parameters (denoted by their levels as A<sub>3</sub>B<sub>3</sub>C<sub>3</sub>D<sub>2</sub>E<sub>3</sub>F<sub>3</sub>G<sub>2</sub>H<sub>3</sub>) is obtained to maximize the performance of the BHE. These parameters yielded an optimum heat transfer rate of 87.3 W/m and thermal effectiveness of 54.6%. Finally, analysis of variance (ANOVA) showed that ground thermal conductivity, the inlet temperature of the working fluid, and borehole depth are the most influential parameters affecting the performance of the BHE. The study provides crucial information for performance improvement, enhanced energy savings, reduced environmental impact, and optimization of a hybrid ground source heat pump system that can be integrated with borehole thermal energy storage.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Effect of Thickness on Performance of Thermal Management System for a Prismatic Lithium-Ion Battery Using Phase Change Material”
Pub Date : 2025-02-18 DOI: 10.1002/est2.70143

U. Morali, “ Effect of Thickness on Performance of Thermal Management System for a Prismatic Lithium-Ion Battery Using Phase Change Material,” Energy Storage 7 (2025): e70135, https://doi.org/10.1002/est2.70135.

We apologize for this error.

{"title":"Correction to “Effect of Thickness on Performance of Thermal Management System for a Prismatic Lithium-Ion Battery Using Phase Change Material”","authors":"","doi":"10.1002/est2.70143","DOIUrl":"https://doi.org/10.1002/est2.70143","url":null,"abstract":"<p>\u0000 <span>U. Morali</span>, “ <span>Effect of Thickness on Performance of Thermal Management System for a Prismatic Lithium-Ion Battery Using Phase Change Material</span>,” <i>Energy Storage</i> <span>7</span> (<span>2025</span>): e70135, https://doi.org/10.1002/est2.70135.\u0000 </p><p>We apologize for this error.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic Aspects of Short-Term Storage of High G-Force in the Human Body
Pub Date : 2025-02-12 DOI: 10.1002/est2.70125
Melis Nur Mutlu, Mustafa Özilgen

The gravitational force (g-force) of the Earth is referred to as 1G. When pilots, astronauts, and race car drivers get under the effect of higher G-forces, their blood accumulates in the lower parts of their bodies, although their heart rates increase, and their cardiovascular systems supply less blood to their brains and lungs. When insufficient oxygenation of the brain causes loss of consciousness, incapacitated pilots or drivers may cause accidents resulting in serious injury or death. Pilots receive high-G training to prevent gravity-induced loss of consciousness (G-LOC). Wearing anti-G suits on flights may help to decrease the G-LOC. While the maximum G-Force tolerance of a normal person is approximately 4G, it increases to 9G when a pilot is with equipment. In the experiments at 46.2G, a pilot, John Stapp, managed to barely stay conscious; his retinas were severed, but he got his normal vision back after a day and he showed that position and safety precautions could help the human body withstand high amounts of crash forces. This research helped to develop several safety changes in automobiles. Indycar is America's top single-seater racing series. The crash recorders installed in their cars have shown that as long as safety systems are in place, the Indycar drivers can tolerate impacts over 100G without serious injuries. This study makes a thermodynamic assessment of the effects of the high G-force when the race car drivers and the jet pilots are tentatively subject to it but get out of that effect when their task is over.

{"title":"Thermodynamic Aspects of Short-Term Storage of High G-Force in the Human Body","authors":"Melis Nur Mutlu,&nbsp;Mustafa Özilgen","doi":"10.1002/est2.70125","DOIUrl":"https://doi.org/10.1002/est2.70125","url":null,"abstract":"<div>\u0000 \u0000 <p>The gravitational force (g-force) of the Earth is referred to as 1G. When pilots, astronauts, and race car drivers get under the effect of higher G-forces, their blood accumulates in the lower parts of their bodies, although their heart rates increase, and their cardiovascular systems supply less blood to their brains and lungs. When insufficient oxygenation of the brain causes loss of consciousness, incapacitated pilots or drivers may cause accidents resulting in serious injury or death. Pilots receive high-G training to prevent gravity-induced loss of consciousness (G-LOC). Wearing anti-G suits on flights may help to decrease the G-LOC. While the maximum G-Force tolerance of a normal person is approximately 4G, it increases to 9G when a pilot is with equipment. In the experiments at 46.2G, a pilot, John Stapp, managed to barely stay conscious; his retinas were severed, but he got his normal vision back after a day and he showed that position and safety precautions could help the human body withstand high amounts of crash forces. This research helped to develop several safety changes in automobiles. Indycar is America's top single-seater racing series. The crash recorders installed in their cars have shown that as long as safety systems are in place, the Indycar drivers can tolerate impacts over 100G without serious injuries. This study makes a thermodynamic assessment of the effects of the high G-force when the race car drivers and the jet pilots are tentatively subject to it but get out of that effect when their task is over.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight Into Evaluation of Electrical Properties of Li2MSiO4/Li2M0.5N0.5SiO4 (M, N = Mn, Fe Co, Ni) Cathode Materials
Pub Date : 2025-02-11 DOI: 10.1002/est2.70116
Samin Hassani, Hatef Yousefi-Mashhour, Nahid Lotfi-Kia, Mohammad Mahdi Kalantarian

A new vision to evaluate rate-capability and electrical properties of the cathode materials of a particular olivine structured family for Li-ion batteries is established. These evaluations obtain electrical conductivity, by noble approaches using DFT, which is related to intrinsic/extrinsic bands concepts and electrical rate-capability. Individual and alloyed transition metals-containing cathodes are investigated, namely, Li2MSiO4/Li2M0.5N0.5SiO4 (M, N = Mn, Fe Co, Ni). Our analysis focused on the electrical properties, including band-gap (BG) and rate-capability, utilizing the GGA(+U)/LSDA(+U) approximations. The electrical properties of the Li2MSiO4/Li2M0.5N0.5SiO4 materials were thoroughly examined by evaluating both the band-gap and electrical rate-capability. For band-gap assessment, we considered two types of band-gap (ILBG/ELBG); while, two criteria (Delta/CCTB) were employed to evaluate the rate-capability. The evaluation of band-gap indicated that all the considered materials exhibited low conductivity. Nonetheless, our findings highlight that the electrical rate-capability of a cell holds greater practical importance than the band-gap property. Our approaches provided reliable predictions for the rate-capability of the alloyed transition metals materials. The theoretically obtained results and conclusions are validated by available experimental data. We conclude that the rate capability approaches are more important than sole band gap. Also, the CCTB approach is more applicable for this electrode family than the Delta. This study can help understanding of behaviors of the alloyed electrode materials. Also, its methodology is worthy to use for other analogous materials.

{"title":"Insight Into Evaluation of Electrical Properties of Li2MSiO4/Li2M0.5N0.5SiO4 (M, N = Mn, Fe Co, Ni) Cathode Materials","authors":"Samin Hassani,&nbsp;Hatef Yousefi-Mashhour,&nbsp;Nahid Lotfi-Kia,&nbsp;Mohammad Mahdi Kalantarian","doi":"10.1002/est2.70116","DOIUrl":"https://doi.org/10.1002/est2.70116","url":null,"abstract":"<div>\u0000 \u0000 <p>A new vision to evaluate rate-capability and electrical properties of the cathode materials of a particular olivine structured family for Li-ion batteries is established. These evaluations obtain electrical conductivity, by noble approaches using DFT, which is related to intrinsic/extrinsic bands concepts and electrical rate-capability. Individual and alloyed transition metals-containing cathodes are investigated, namely, Li<sub>2</sub>MSiO<sub>4</sub>/Li<sub>2</sub>M<sub>0.5</sub>N<sub>0.5</sub>SiO<sub>4</sub> (M, N = Mn, Fe Co, Ni). Our analysis focused on the electrical properties, including band-gap (BG) and rate-capability, utilizing the GGA(+U)/LSDA(+U) approximations. The electrical properties of the Li<sub>2</sub>MSiO<sub>4</sub>/Li<sub>2</sub>M<sub>0.5</sub>N<sub>0.5</sub>SiO<sub>4</sub> materials were thoroughly examined by evaluating both the band-gap and electrical rate-capability. For band-gap assessment, we considered two types of band-gap (ILBG/ELBG); while, two criteria (Delta/CCTB) were employed to evaluate the rate-capability. The evaluation of band-gap indicated that all the considered materials exhibited low conductivity. Nonetheless, our findings highlight that the electrical rate-capability of a cell holds greater practical importance than the band-gap property. Our approaches provided reliable predictions for the rate-capability of the alloyed transition metals materials. The theoretically obtained results and conclusions are validated by available experimental data. We conclude that the rate capability approaches are more important than sole band gap. Also, the CCTB approach is more applicable for this electrode family than the Delta. This study can help understanding of behaviors of the alloyed electrode materials. Also, its methodology is worthy to use for other analogous materials.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Form-Stable Composite Phase Change Material With In Situ Constructed Phase-Changeable Polymer Adsorption Backbone
Pub Date : 2025-02-11 DOI: 10.1002/est2.70126
Changren Xiao, Jiangyun Zhang, Guoqing Zhang

The strategy of mixing adsorption skeleton to obtain composite phase change materials (CPCM) aiming to strengthen its thermal stability is confirmed to be simple but effective, and CPCM's thermal stability is directly proportional to the weight ratio of the adsorption skeleton. However, the processability and thermal storage density of which are inversely proportional to the content of adsorption backbone. To relieve the above contradiction, this paper proposed an in situ construction method for a phase-changeable adsorption backbone (PCPB). The in situ growth strategy avoided the processing difficulties caused by high stirring viscosity owing to the addition of large dosage of adsorption filler. Moreover, PCPB prepared via in situ polymerization of octadecyl methacrylate and 1,6-hexanediol diacrylate in PCM matrix presented obvious endothermic peak with latent heat of 89.5 J g−1, which could undoubtedly alleviate the decay rate of CPCM's latent heat. In details, the maximum PCM loading percentage of PCPB could reach 50 wt%, and CPCM at this loading amount could reach latent heat as high as 149.7 J g−1 and maintain form-stable without leakage even after thermal storage saturation. In addition, with the growth of PCPB in the phase change matrix, the 50% degradation temperature increased dramatically from 164.6°C to 350.0°C.

{"title":"Form-Stable Composite Phase Change Material With In Situ Constructed Phase-Changeable Polymer Adsorption Backbone","authors":"Changren Xiao,&nbsp;Jiangyun Zhang,&nbsp;Guoqing Zhang","doi":"10.1002/est2.70126","DOIUrl":"https://doi.org/10.1002/est2.70126","url":null,"abstract":"<div>\u0000 \u0000 <p>The strategy of mixing adsorption skeleton to obtain composite phase change materials (CPCM) aiming to strengthen its thermal stability is confirmed to be simple but effective, and CPCM's thermal stability is directly proportional to the weight ratio of the adsorption skeleton. However, the processability and thermal storage density of which are inversely proportional to the content of adsorption backbone. To relieve the above contradiction, this paper proposed an in situ construction method for a phase-changeable adsorption backbone (PCPB). The in situ growth strategy avoided the processing difficulties caused by high stirring viscosity owing to the addition of large dosage of adsorption filler. Moreover, PCPB prepared via in situ polymerization of octadecyl methacrylate and 1,6-hexanediol diacrylate in PCM matrix presented obvious endothermic peak with latent heat of 89.5 J g<sup>−1</sup>, which could undoubtedly alleviate the decay rate of CPCM's latent heat. In details, the maximum PCM loading percentage of PCPB could reach 50 wt%, and CPCM at this loading amount could reach latent heat as high as 149.7 J g<sup>−1</sup> and maintain form-stable without leakage even after thermal storage saturation. In addition, with the growth of PCPB in the phase change matrix, the 50% degradation temperature increased dramatically from 164.6°C to 350.0°C.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Two Phases Reduced Model of a Rock Bed Thermocline Thermal Energy Storage Unit: Parametric Study on Thermal Performances
Pub Date : 2025-02-10 DOI: 10.1002/est2.70134
Yassine Sougtan, Mohammed Khalij, Hamid El Qarnia, Abdelhamid Kheiri

A numerical simulation was conducted to evaluate the performance of a structured compact rock-bed energy storage system. The study encompassed the analysis of various configurations of rock bed arrangements, including simple cubic, body-centred cubic, and face-centred cubic structures, along with their dimensions and the velocity of the heat transfer fluid (HTF) during the charging process. A transient three-dimensional reduced model incorporating symmetry planes was developed and subsequently validated. This approach has been shown to significantly minimize the extensive computational time typically required when the full model is adopted, while providing enhanced accuracy compared to commonly used models in existing literature, achieving an improvement in accuracy exceeding 5%. Moreover, the methodology that has been adopted enables a more comprehensive investigation of the storage system, thus facilitating the capture of local data. The findings indicated a pronounced effect of the arrangement of the rock bed, the rock dimensions, and the HTF velocity on the heat transfer within the thermocline rock bed thermal energy storage system. It was determined that the thermal energy storage was optimized when the rocks were arranged in a face-centered cubic configuration, which is associated with lower porosity. It was established that, at an HTF velocity of 3.84 × 10–4 m.s-1 and a rock diameter of 0.01 m, transitioning from a simple cubic arrangement to a face-centred cubic arrangement resulted in a 16.5% increase in capacity ratio and a 21.5% enhancement in exergy efficiency. Furthermore, it was determined that this transition also delayed the charging process by 39% (equivalent to 40 min). Moreover, a reduction in the rock diameter from 0.05 to 0.01 m resulted in a 44% increase in capacity ratio and a 54.5% rise in exergy efficiency for a simple cubic arrangement at the same HTF velocity, with a recorded 76% increase in charging duration. Furthermore, for a rock diameter of 0.03 m and a simple cubic arrangement, decreasing the HTF velocity from 9.233 × 10–4 m.s-1 to 2 × 10–4 m.s-1 resulted in a 26.5% increase in capacity ratio, a 28% increase in exergy efficiency, and a delay of 2.8 h in charging duration.

{"title":"3D Two Phases Reduced Model of a Rock Bed Thermocline Thermal Energy Storage Unit: Parametric Study on Thermal Performances","authors":"Yassine Sougtan,&nbsp;Mohammed Khalij,&nbsp;Hamid El Qarnia,&nbsp;Abdelhamid Kheiri","doi":"10.1002/est2.70134","DOIUrl":"https://doi.org/10.1002/est2.70134","url":null,"abstract":"<div>\u0000 \u0000 <p>A numerical simulation was conducted to evaluate the performance of a structured compact rock-bed energy storage system. The study encompassed the analysis of various configurations of rock bed arrangements, including simple cubic, body-centred cubic, and face-centred cubic structures, along with their dimensions and the velocity of the heat transfer fluid (HTF) during the charging process. A transient three-dimensional reduced model incorporating symmetry planes was developed and subsequently validated. This approach has been shown to significantly minimize the extensive computational time typically required when the full model is adopted, while providing enhanced accuracy compared to commonly used models in existing literature, achieving an improvement in accuracy exceeding 5%. Moreover, the methodology that has been adopted enables a more comprehensive investigation of the storage system, thus facilitating the capture of local data. The findings indicated a pronounced effect of the arrangement of the rock bed, the rock dimensions, and the HTF velocity on the heat transfer within the thermocline rock bed thermal energy storage system. It was determined that the thermal energy storage was optimized when the rocks were arranged in a face-centered cubic configuration, which is associated with lower porosity. It was established that, at an HTF velocity of 3.84 × 10–4 m.s-1 and a rock diameter of 0.01 m, transitioning from a simple cubic arrangement to a face-centred cubic arrangement resulted in a 16.5% increase in capacity ratio and a 21.5% enhancement in exergy efficiency. Furthermore, it was determined that this transition also delayed the charging process by 39% (equivalent to 40 min). Moreover, a reduction in the rock diameter from 0.05 to 0.01 m resulted in a 44% increase in capacity ratio and a 54.5% rise in exergy efficiency for a simple cubic arrangement at the same HTF velocity, with a recorded 76% increase in charging duration. Furthermore, for a rock diameter of 0.03 m and a simple cubic arrangement, decreasing the HTF velocity from 9.233 × 10–4 m.s-1 to 2 × 10–4 m.s-1 resulted in a 26.5% increase in capacity ratio, a 28% increase in exergy efficiency, and a delay of 2.8 h in charging duration.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact Analysis of Combining Distributed Generation With Charging Loads for Electric Vehicles Accounting Reliability
Pub Date : 2025-02-10 DOI: 10.1002/est2.70138
Khaliq Ahmed, Devkaran Sakravdia, Chandrakant Sharma

This work is concerned with the penetration of renewable energy-based distributed generation along with electric vehicle (EV) charging loads into power distribution systems. This presents a new optimization procedure integrating Particle Swarm Optimization and the Andean Condor Algorithm (PSO-ACA) into a high-performing route for system design. It analyzes the performance of the system in terms of minimizing the loss of power and maximizing reliability. The study evaluates reliability indices and power loss reductions in detail by utilizing benchmark 33-bus and 69-bus test systems. The findings indicate that for the 33-bus system, the active power loss reduction obtained is 64.3 KW, with real power loss showing a 68% reduction, whereas for the 69-bus system, real power loss decrease is 72% (62.8 KW). This led to a substantial reduction in reliability indices thus enhancing the overall system performance as hybrid optimization techniques improved the reliability of the system remarkably. These results show the immense potential that advanced hybrid optimization approaches combined with reliability analyses have for delivering the economically viable, sustainable renewable energy systems of the future. This collaboration is in line with the larger objectives of promoting sustainable energy solutions and establishing a more resilient and efficient energy framework.

{"title":"Impact Analysis of Combining Distributed Generation With Charging Loads for Electric Vehicles Accounting Reliability","authors":"Khaliq Ahmed,&nbsp;Devkaran Sakravdia,&nbsp;Chandrakant Sharma","doi":"10.1002/est2.70138","DOIUrl":"https://doi.org/10.1002/est2.70138","url":null,"abstract":"<div>\u0000 \u0000 <p>This work is concerned with the penetration of renewable energy-based distributed generation along with electric vehicle (EV) charging loads into power distribution systems. This presents a new optimization procedure integrating Particle Swarm Optimization and the Andean Condor Algorithm (PSO-ACA) into a high-performing route for system design. It analyzes the performance of the system in terms of minimizing the loss of power and maximizing reliability. The study evaluates reliability indices and power loss reductions in detail by utilizing benchmark 33-bus and 69-bus test systems. The findings indicate that for the 33-bus system, the active power loss reduction obtained is 64.3 KW, with real power loss showing a 68% reduction, whereas for the 69-bus system, real power loss decrease is 72% (62.8 KW). This led to a substantial reduction in reliability indices thus enhancing the overall system performance as hybrid optimization techniques improved the reliability of the system remarkably. These results show the immense potential that advanced hybrid optimization approaches combined with reliability analyses have for delivering the economically viable, sustainable renewable energy systems of the future. This collaboration is in line with the larger objectives of promoting sustainable energy solutions and establishing a more resilient and efficient energy framework.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Strategies of Electric Vehicle Fast Charging Stations and Reliability Assessment in Distribution Networks With Solar-Based Distributed Generation
Pub Date : 2025-02-10 DOI: 10.1002/est2.70127
Abhishek Kumar Singh, Ashwani Kumar

Industry insiders who want to lower the greenhouse gas emissions linked to conventional fuel cars consider electric vehicles (EVs) as a practical alternative for mobility. EVs are a potential problem even though their performance is limited by their low battery power, long service charging times, and high resource costs. To improve the EV performance, this manuscript presents the hybrid technique for the optimal position of electric vehicles fast-charging stations (EVFCSs) in the distribution network. The proposed scheme is a joined execution of Wild Horse Optimizer (WHO) and Gradient Boosting Decision Tree (GBDT), which is commonly named the WHO-GBDT technique. The primary goal of the research is to decrease loss of power and voltage deviation. The optimal position for an electric vehicle charging station (EVCS) is determined using the WHO method. GDBT is used to predict the load demand. The proposed WHO-GDDT regulates the placement of EVCS, balancing their integration with distributed generation while enhancing the sustainability and reliability of distribution networks. The proposed WHO-GBDT algorithm is actualized in the MATLAB platform and compared their performance with various existing strategies like the Forensic Investigation Algorithm, Archimedean Optimization Algorithm (FBIAOA), Tunicate Swarm Algorithm (TSA), and Cuttlefish Algorithm (CA). The simulation findings of the proposed scheme are validated under three cases in the IEEE 33 bus system, like load 1, load 2 and load 3. From the result, the proposed method effectively reduced loss of power and voltage variation by 58.24% and 90.47%, respectively.

{"title":"Enhanced Strategies of Electric Vehicle Fast Charging Stations and Reliability Assessment in Distribution Networks With Solar-Based Distributed Generation","authors":"Abhishek Kumar Singh,&nbsp;Ashwani Kumar","doi":"10.1002/est2.70127","DOIUrl":"https://doi.org/10.1002/est2.70127","url":null,"abstract":"<div>\u0000 \u0000 <p>Industry insiders who want to lower the greenhouse gas emissions linked to conventional fuel cars consider electric vehicles (EVs) as a practical alternative for mobility. EVs are a potential problem even though their performance is limited by their low battery power, long service charging times, and high resource costs. To improve the EV performance, this manuscript presents the hybrid technique for the optimal position of electric vehicles fast-charging stations (EVFCSs) in the distribution network. The proposed scheme is a joined execution of Wild Horse Optimizer (WHO) and Gradient Boosting Decision Tree (GBDT), which is commonly named the WHO-GBDT technique. The primary goal of the research is to decrease loss of power and voltage deviation. The optimal position for an electric vehicle charging station (EVCS) is determined using the WHO method. GDBT is used to predict the load demand. The proposed WHO-GDDT regulates the placement of EVCS, balancing their integration with distributed generation while enhancing the sustainability and reliability of distribution networks. The proposed WHO-GBDT algorithm is actualized in the MATLAB platform and compared their performance with various existing strategies like the Forensic Investigation Algorithm, Archimedean Optimization Algorithm (FBIAOA), Tunicate Swarm Algorithm (TSA), and Cuttlefish Algorithm (CA). The simulation findings of the proposed scheme are validated under three cases in the IEEE 33 bus system, like load 1, load 2 and load 3. From the result, the proposed method effectively reduced loss of power and voltage variation by 58.24% and 90.47%, respectively.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Prediction of the Remaining Useful Life of Lithium-Ion Cells Using Ensemble and Non-Ensemble Algorithms
Pub Date : 2025-02-04 DOI: 10.1002/est2.70133
Femilda Josephin J.S., Ankit Sonthalia, Thiyagarajan Subramanian, Fethi Aloui, Dhowmya Bhatt, Edwin Geo Varuvel

Lithium-ion cells have become an important part of our daily lives. They are used to power mobile phones, laptops and more recently electric vehicles (both two- and four-wheelers). The chemical behavior of the cells is rather complex and non-linear. For reliable and sustainable use of the cells for practical applications, it is imperative to predict the precise pace at which their capacity will degrade. More importantly, the lifetime of the cells must be predicted at an early stage, which would accelerate development and design optimization of the cells. However, most of the existing methods cannot predict the lifetime at an early stage, since there is a weak correlation between the cell capacity and lifetime. In this study for accurate forecasting of the battery lifetime, the patterns of the parameters such as cell current, voltage, temperature, charging time, internal resistance, and capacity were examined during charging and discharging cycle of the cell. Twelve manually crafted features were prepared from these parameters. The dataset for the features was created using the raw data of the first 100 cycles of 124 cells. Six ensemble and non-ensemble machine learning algorithms, namely, multiple linear regression (MLR), decision tree, support vector machine (SVM), gradient boosting machine (GBM), light gradient boosting machine (LGBM), and extreme gradient boosting (XGBoost), were trained with the features for predicting the life-cycle of the cells. The R2 and root mean squared error (RMSE) values of MLR, decision tree, SVM, GBM, LGBM, and XGBoost were found to be 0.72 and 201, 0.83 and 155, 0.85 and 146, 0.92 and 100, 0.9 and 112, and 0.94 and 95, respectively. The prediction accuracy of lithium-ion cell life-time was found to be the best with the XGBoost algorithm. This shows that only first 100 cycles are required foraccurately predicting the number of cycles the lithium-ion cell can work for. Lastly, the results of the study were compared with the available studies in the literature. Three studies were chosen, and the RMSE of the method proposed in this study was found to be higher than the three studies by 43, 17, and 20. Therefore, the proposed method is a suitable option for predicting the lifetime of lithium-ion cells during the early stages of its development.

{"title":"Early Prediction of the Remaining Useful Life of Lithium-Ion Cells Using Ensemble and Non-Ensemble Algorithms","authors":"Femilda Josephin J.S.,&nbsp;Ankit Sonthalia,&nbsp;Thiyagarajan Subramanian,&nbsp;Fethi Aloui,&nbsp;Dhowmya Bhatt,&nbsp;Edwin Geo Varuvel","doi":"10.1002/est2.70133","DOIUrl":"https://doi.org/10.1002/est2.70133","url":null,"abstract":"<div>\u0000 \u0000 <p>Lithium-ion cells have become an important part of our daily lives. They are used to power mobile phones, laptops and more recently electric vehicles (both two- and four-wheelers). The chemical behavior of the cells is rather complex and non-linear. For reliable and sustainable use of the cells for practical applications, it is imperative to predict the precise pace at which their capacity will degrade. More importantly, the lifetime of the cells must be predicted at an early stage, which would accelerate development and design optimization of the cells. However, most of the existing methods cannot predict the lifetime at an early stage, since there is a weak correlation between the cell capacity and lifetime. In this study for accurate forecasting of the battery lifetime, the patterns of the parameters such as cell current, voltage, temperature, charging time, internal resistance, and capacity were examined during charging and discharging cycle of the cell. Twelve manually crafted features were prepared from these parameters. The dataset for the features was created using the raw data of the first 100 cycles of 124 cells. Six ensemble and non-ensemble machine learning algorithms, namely, multiple linear regression (MLR), decision tree, support vector machine (SVM), gradient boosting machine (GBM), light gradient boosting machine (LGBM), and extreme gradient boosting (XGBoost), were trained with the features for predicting the life-cycle of the cells. The <i>R</i><sup>2</sup> and root mean squared error (RMSE) values of MLR, decision tree, SVM, GBM, LGBM, and XGBoost were found to be 0.72 and 201, 0.83 and 155, 0.85 and 146, 0.92 and 100, 0.9 and 112, and 0.94 and 95, respectively. The prediction accuracy of lithium-ion cell life-time was found to be the best with the XGBoost algorithm. This shows that only first 100 cycles are required foraccurately predicting the number of cycles the lithium-ion cell can work for. Lastly, the results of the study were compared with the available studies in the literature. Three studies were chosen, and the RMSE of the method proposed in this study was found to be higher than the three studies by 43, 17, and 20. Therefore, the proposed method is a suitable option for predicting the lifetime of lithium-ion cells during the early stages of its development.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Objective Optimization of a Spherical Thermal Storage Tank Using a Student Psychology-Based Approach
Pub Date : 2025-02-04 DOI: 10.1002/est2.70136
Xi Wang, Rupp Carriveau, David S.-K. Ting, David Brown, Andrew McGillis

Energy storage technologies often store heat, with water as a preferred medium due to its availability and low cost. However, maintaining water in a liquid state at high temperatures requires large pressure vessels, posing significant design challenges. Balancing thermal storage capacity with pressure constraints is essential. This paper explores the dynamics of thermal storage water tanks, aiming to optimize their design using a multi-criteria approach. An equilibrium thermodynamic model was developed to evaluate the impact of geometric structure and operating parameters. The results show that optimizing a single variable is insufficient to minimize pressure swing, reduce heat loss, and maximize storage capacity. To address these trade-offs, a multi-objective student psychology-based optimization (SPBO) algorithm was employed for three-objective optimization, outperforming particle swarm optimization (PSO) in convergence. The technique for order preference by similarity to ideal solution (TOPSIS) method was applied to the Pareto frontier, yielding ideal solutions using both data-driven and manually weighted approaches. Compared with the initial design, the data-driven weighted (entropy-weighted and coefficient of variation methods) optimal designs improved all objectives, reducing pressure swing by 12.8% and 19.8%, respectively. A manually weighted approach reduced pressure swing by up to 86.7%, albeit with a decrease in thermal storage capacity.

{"title":"Multi-Objective Optimization of a Spherical Thermal Storage Tank Using a Student Psychology-Based Approach","authors":"Xi Wang,&nbsp;Rupp Carriveau,&nbsp;David S.-K. Ting,&nbsp;David Brown,&nbsp;Andrew McGillis","doi":"10.1002/est2.70136","DOIUrl":"https://doi.org/10.1002/est2.70136","url":null,"abstract":"<p>Energy storage technologies often store heat, with water as a preferred medium due to its availability and low cost. However, maintaining water in a liquid state at high temperatures requires large pressure vessels, posing significant design challenges. Balancing thermal storage capacity with pressure constraints is essential. This paper explores the dynamics of thermal storage water tanks, aiming to optimize their design using a multi-criteria approach. An equilibrium thermodynamic model was developed to evaluate the impact of geometric structure and operating parameters. The results show that optimizing a single variable is insufficient to minimize pressure swing, reduce heat loss, and maximize storage capacity. To address these trade-offs, a multi-objective student psychology-based optimization (SPBO) algorithm was employed for three-objective optimization, outperforming particle swarm optimization (PSO) in convergence. The technique for order preference by similarity to ideal solution (TOPSIS) method was applied to the Pareto frontier, yielding ideal solutions using both data-driven and manually weighted approaches. Compared with the initial design, the data-driven weighted (entropy-weighted and coefficient of variation methods) optimal designs improved all objectives, reducing pressure swing by 12.8% and 19.8%, respectively. A manually weighted approach reduced pressure swing by up to 86.7%, albeit with a decrease in thermal storage capacity.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energy Storage
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1