Novel yttrium and silicon co-doped Li1.3+x+yAl0.3−xYxTi1.7Siy(P1−yO4)3 solid electrolyte for lithium batteries: Effect on ionic conductivity and crystal structure

Energy Storage Pub Date : 2024-05-08 DOI:10.1002/est2.628
Hirra Anwar, Hassaan Bin Shahid, Haseeb Ahmad, Khadija Nasir, Zeeshan Ali, Ghulam Ali
{"title":"Novel yttrium and silicon co-doped Li1.3+x+yAl0.3−xYxTi1.7Siy(P1−yO4)3 solid electrolyte for lithium batteries: Effect on ionic conductivity and crystal structure","authors":"Hirra Anwar,&nbsp;Hassaan Bin Shahid,&nbsp;Haseeb Ahmad,&nbsp;Khadija Nasir,&nbsp;Zeeshan Ali,&nbsp;Ghulam Ali","doi":"10.1002/est2.628","DOIUrl":null,"url":null,"abstract":"<p>Doping of superfast ionic conductors like NASICON has been shown to boost ionic conductivity and the efficiency of lithium batteries. NASICON-type yttrium and silicon-doped lithium aluminum titanium phosphate (LATP) solid electrolytes have been synthesized via the conventional solid-state method at different sintering temperatures. Their intrinsic physical, chemical, and electrochemical properties are analyzed using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Yttrium and silicon co-doped LATP (LAYTSP) powder sintered at 900°C exhibits homogeneous hexagonal morphology and better crystallinity than the pure LATP solid electrolyte synthesized by the same methodology. LAYSTP demonstrated a higher ionic conductivity of 5.98 × 10<sup>−6</sup> S/cm at ambient conditions. Mixing 5%-LiCl with LAYTSP-900°C improved the ionic conductivity significantly up to 1.88 × 10<sup>−4</sup> S/cm. Cell viability testing demonstrated that our cells exhibit long-term stability and are suitable for applications requiring sustained high voltages.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Doping of superfast ionic conductors like NASICON has been shown to boost ionic conductivity and the efficiency of lithium batteries. NASICON-type yttrium and silicon-doped lithium aluminum titanium phosphate (LATP) solid electrolytes have been synthesized via the conventional solid-state method at different sintering temperatures. Their intrinsic physical, chemical, and electrochemical properties are analyzed using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Yttrium and silicon co-doped LATP (LAYTSP) powder sintered at 900°C exhibits homogeneous hexagonal morphology and better crystallinity than the pure LATP solid electrolyte synthesized by the same methodology. LAYSTP demonstrated a higher ionic conductivity of 5.98 × 10−6 S/cm at ambient conditions. Mixing 5%-LiCl with LAYTSP-900°C improved the ionic conductivity significantly up to 1.88 × 10−4 S/cm. Cell viability testing demonstrated that our cells exhibit long-term stability and are suitable for applications requiring sustained high voltages.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于锂电池的新型钇硅共掺杂 Li1.3+x+yAl0.3-xYxTi1.7Siy(P1-yO4)3 固体电解质:对离子导电性和晶体结构的影响
事实证明,掺杂 NASICON 等超快离子导体可提高离子导电性和锂电池的效率。我们采用传统固态法,在不同烧结温度下合成了 NASICON 型掺钇和掺硅磷酸锂铝钛(LATP)固体电解质。利用 X 射线衍射、扫描电子显微镜、傅立叶变换红外光谱、X 射线光电子能谱和电化学阻抗能谱分析了它们的内在物理、化学和电化学特性。与采用相同方法合成的纯 LATP 固体电解质相比,在 900°C 下烧结的钇硅共掺杂 LATP(LAYTSP)粉末呈现出均匀的六方形态和更好的结晶度。在环境条件下,LAYSTP 的离子电导率高达 5.98 × 10-6 S/cm。将 5%-氯化锂与 LAYTSP-900°C 混合后,离子电导率显著提高至 1.88 × 10-4 S/cm。细胞存活率测试表明,我们的细胞具有长期稳定性,适用于需要持续高电压的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
An Innovative Energy Storage System Based on Phase Change Material and Solar Energy Integrated With an Air Handling Unit to Produce Heating and Cooling Performance Analysis of a Renewable-Powered Multi-Gas Floating Storage and Regasification Facility for Ammonia Vessels With Reconversion to Hydrogen The Solid-State Battery Applicational Technology: Material Characteristics and Charge–Discharge Mechanisms of Iron Chloride Electrodes Hydrogen Storage Studies of Nanocomposites Derived From O-Ethyl-S-((5-Methoxy-1H-Benzo[d]Imidazol-2-Yl)Carbonothioate (OESMBIC) With ZnO and TiO2 Nanoparticles Performance Enhancement of Solar Still Couples With Solar Water Heater by Using Different PCM's and Nanoparticle Combinations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1