Energy flux couples sulfur isotope fractionation to proteomic and metabolite profiles in Desulfovibrio vulgaris

IF 2.7 2区 地球科学 Q2 BIOLOGY Geobiology Pub Date : 2024-05-09 DOI:10.1111/gbi.12600
William D. Leavitt, Jacob Waldbauer, Sofia S. Venceslau, Min Sub Sim, Lichun Zhang, Flavia Jaquelina Boidi, Sydney Plummer, Julia M. Diaz, Inês A. C. Pereira, Alexander S. Bradley
{"title":"Energy flux couples sulfur isotope fractionation to proteomic and metabolite profiles in Desulfovibrio vulgaris","authors":"William D. Leavitt,&nbsp;Jacob Waldbauer,&nbsp;Sofia S. Venceslau,&nbsp;Min Sub Sim,&nbsp;Lichun Zhang,&nbsp;Flavia Jaquelina Boidi,&nbsp;Sydney Plummer,&nbsp;Julia M. Diaz,&nbsp;Inês A. C. Pereira,&nbsp;Alexander S. Bradley","doi":"10.1111/gbi.12600","DOIUrl":null,"url":null,"abstract":"<p>Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12600","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12600","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能量通量将硫同位素分馏与普通脱硫弧菌的蛋白质组和代谢物特征结合起来。
微生物的硫酸盐还原作用是全球碳循环和地球表面氧化还原演化的核心。跟踪硫酸盐还原微生物在不同时间和空间的活动,有赖于在新陈代谢的生化机制背景下对稳定硫同位素分馏的细致了解。在这里,我们将稳定硫同位素分馏的幅度与不同细胞能量机制下的蛋白质组和代谢物概况联系起来。当能量供应有限时,细胞特异性硫酸盐呼吸速率和净硫同位素分馏成反比。除了净硫同位素分馏值,我们还量化了蛋白质表达、细胞内硫代谢物的丰度和同位素组成以及脂质结构和脂质/水氢同位素分馏值的变化。这些耦合方法揭示了哪些蛋白质丰度直接随能量通量的变化而变化,哪些蛋白质丰度变化极小,哪些蛋白质丰度的变化可能与能量通量无关,并且可能不会导致 S-同位素分馏值的变化。通过将大量 S-同位素观测结果与定量蛋白质组学相结合,我们为代谢同位素模型提供了新的约束条件。这些结果为建立更具预测性的代谢分馏模型以及解释环境硫和硫酸盐还原脂质-H 同位素数据奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
期刊最新文献
Cyanobacteria Boring Limestones in Freshwater Settings-Their Pioneering Role in Sculpturing Pebbles and Carbonate Dissolution. Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere Crystallization Pathways of Iron Formations: Insights From Magnetic Properties and High-Resolution Imaging of the 2.7 Ga Carajás Formation, Brazil The Impact of Early Diagenesis on Biosignature Preservation in Sulfate Evaporites: Insights From Messinian (Late Miocene) Gypsum Living in Their Heyday: Iron-Oxidizing Bacteria Bloomed in Shallow-Marine, Subtidal Environments at ca. 1.88 Ga
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1