Proteolysis in plant immunity.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Cell Pub Date : 2024-09-03 DOI:10.1093/plcell/koae142
Yanan Liu, Edan Jackson, Xueru Liu, Xingchuan Huang, Renier A L van der Hoorn, Yuelin Zhang, Xin Li
{"title":"Proteolysis in plant immunity.","authors":"Yanan Liu, Edan Jackson, Xueru Liu, Xingchuan Huang, Renier A L van der Hoorn, Yuelin Zhang, Xin Li","doi":"10.1093/plcell/koae142","DOIUrl":null,"url":null,"abstract":"<p><p>Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defence activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors, intracellular nucleotide-binding domain leucine-rich repeat receptors, and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae142","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defence activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors, intracellular nucleotide-binding domain leucine-rich repeat receptors, and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物免疫中的蛋白质分解
与转录和翻译相比,蛋白质降解机制的作用速度更快,而且可以定向作用于不同的亚细胞区,从而实现对信号事件的即时调控。因此,蛋白质分解被广泛用于控制不同生物过程和途径中关键调控因子的平衡也就不足为奇了。在过去几十年中,大量研究表明,蛋白水解(蛋白质通过泛素介导的降解系统和蛋白酶分解成肽或氨基酸)是控制植物免疫输出的关键调节机制。在此,我们简要总结了各种蛋白酶在防御激活过程中发挥的作用,并重点介绍了最近的研究成果。我们还介绍了泛素介导的降解系统通过靶向植物膜定位模式识别受体(PRRs)、胞内核苷酸结合域富含亮氨酸重复受体(NLRs)和下游信号元件来调节免疫的最新进展。此外,我们还重点介绍了最近的一些研究,这些研究展示了蛋白水解在保持广谱抗性而不明显减产方面的重要性,从而为设计出能抗多种病原体且产量高的优良作物开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
期刊最新文献
EXECUTER1 and singlet oxygen signaling: A reassessment of nuclear activity. The E3 ligase OsPUB33 controls rice grain size and weight by regulating the OsNAC120-BG1 module. Jasmonate induces translation of the Arabidopsis tRNA-binding protein YUELAO1, which activates MYC2 in jasmonate signaling. REGULATOR OF FATTY ACID SYNTHESIS proteins regulate de novo fatty acid synthesis by modulating hetACCase distribution. ALTERED MERISTEM PROGRAM1 impairs RNA silencing by repressing the biogenesis of a subset of inverted repeat-derived siRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1