In Situ Measurement of Urea Concentration With an In-Fiber SPR-MZI Sensor

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2024-03-09 DOI:10.1109/TNB.2024.3398807
Liangliang Cheng;Wanlu Zheng;Ya-Nan Zhang;Xuegang Li;Yong Zhao
{"title":"In Situ Measurement of Urea Concentration With an In-Fiber SPR-MZI Sensor","authors":"Liangliang Cheng;Wanlu Zheng;Ya-Nan Zhang;Xuegang Li;Yong Zhao","doi":"10.1109/TNB.2024.3398807","DOIUrl":null,"url":null,"abstract":"A fiber-optic urea sensor based on surface plasmon resonance (SPR) and Mach-Zehnder interference (MZI) combined principle was designed and implemented. By plating gold film on the single-mode-no-core-thin-core-single-mode fiber structure, we successfully excited both SPR and MZI, and constructed two parallel detection channels for simultaneously measurement of urea concentration and temperature. Urease was immobilized on the gold film by metal-organic zeolite skeleton (ZIF-8), which can not only fix a large number of urease to improve measurement sensitivity of urea, but also protect urease activity to ensure the sensor stability. Experimental results indicate that the designed urea sensor with temperature compensation function can detect urea solution with concentration of 1-9 mM, and the sensitivity is 1.4 nm/mM. The proposed measurement method provides a new choice for monitoring urea concentration in the field of medical diagnosis and human health monitoring.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10526357/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A fiber-optic urea sensor based on surface plasmon resonance (SPR) and Mach-Zehnder interference (MZI) combined principle was designed and implemented. By plating gold film on the single-mode-no-core-thin-core-single-mode fiber structure, we successfully excited both SPR and MZI, and constructed two parallel detection channels for simultaneously measurement of urea concentration and temperature. Urease was immobilized on the gold film by metal-organic zeolite skeleton (ZIF-8), which can not only fix a large number of urease to improve measurement sensitivity of urea, but also protect urease activity to ensure the sensor stability. Experimental results indicate that the designed urea sensor with temperature compensation function can detect urea solution with concentration of 1-9 mM, and the sensitivity is 1.4 nm/mM. The proposed measurement method provides a new choice for monitoring urea concentration in the field of medical diagnosis and human health monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纤维内 SPR-MZI 传感器现场测量尿素浓度。
我们设计并实现了一种基于表面等离子体共振(SPR)和马赫-泽恩德干涉(MZI)相结合原理的光纤尿素传感器。通过在单模-无芯-细芯-单模光纤结构上镀金膜,我们成功地激发了 SPR 和 MZI,并构建了两个并行检测通道,可同时测量尿素浓度和温度。利用金属有机沸石骨架(ZIF-8)将尿素酶固定在金膜上,既能固定大量尿素酶,提高尿素的测量灵敏度,又能保护尿素酶的活性,保证传感器的稳定性。实验结果表明,所设计的具有温度补偿功能的尿素传感器可以检测浓度为 1-9 mM 的尿素溶液,灵敏度为 1.4 nm/mM。所提出的测量方法为医疗诊断和人体健康监测领域监测尿素浓度提供了新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. "Galaxy" encoding: toward high storage density and low cost. 2024 Index IEEE Transactions on NanoBioscience Vol. 23 Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1