Xuerong Yang, Jingxia Wei, Yong Yang, Yuanyuan He, Lu Guo, Xing He, Lijuan Zhang, Lu Chen
{"title":"CYP1A2 Polymorphism and Drug Co-administration Affect the Blood Levels and Adverse Effects of Pirfenidone.","authors":"Xuerong Yang, Jingxia Wei, Yong Yang, Yuanyuan He, Lu Guo, Xing He, Lijuan Zhang, Lu Chen","doi":"10.1097/FTD.0000000000001208","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mutations in metabolic enzymes and co-administration of drugs may affect the blood concentration of pirfenidone effective in pulmonary fibrosis. To provide a basis for the precise clinical use of pirfenidone, the authors analyzed the correlation between steady-state pirfenidone trough concentration and adverse drug reactions (ADRs) and examined the impact of CYP1A2*1C (rs2069514) and *1F (rs762551) variants and co-administration on pirfenidone blood concentrations and ADRs.</p><p><strong>Methods: </strong>Forty-four patients were enrolled. The blood concentration of pirfenidone was determined using high-performance liquid chromatography. CYP1A2*1C and *1F genotypes were determined using direct SNP sequencing. Additional information related to drug associations was collected to screen factors affecting drug metabolism.</p><p><strong>Results: </strong>The highest predictive value of ADRs was observed when the steady-state trough concentration of pirfenidone was 3.18 mcg·mL-1 and the area under the receiver operating characteristic curve was 0.701 (P = 0.024). The pirfenidone concentration-to-dose ratio (C/D) in CYP1A2*1F homozygous AA mutants was lower than that in C carriers (CC+AC) (1.28 ± 0.85 vs. 2.03 ± 1.28 mcg·mL-1; P = 0.036). Adverse drug reaction (ADR) incidence in the homozygous AA mutant group (28.0%) was significantly lower than that in the C carriers (CC+AC) (63.2%; P = 0.020), and ADR incidence in the A carriers (AC+AA) was considerably lower than that in the CC group (85.7%; P = 0.039). The C/D value of the combined lansoprazole/rabeprazole group was lower than that of the noncombination group (P < 0.05).</p><p><strong>Conclusions: </strong>The ADR incidence was positively correlated with pirfenidone blood concentration. The CYP1A2 (rs762551) AA genotype is associated with lower pirfenidone concentrations and fewer ADRs. Lansoprazole/rabeprazole co-administration reduced pirfenidone concentrations. Randomized controlled trials should further explore personalized dosing of pirfenidone and combination therapies.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Drug Monitoring","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FTD.0000000000001208","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mutations in metabolic enzymes and co-administration of drugs may affect the blood concentration of pirfenidone effective in pulmonary fibrosis. To provide a basis for the precise clinical use of pirfenidone, the authors analyzed the correlation between steady-state pirfenidone trough concentration and adverse drug reactions (ADRs) and examined the impact of CYP1A2*1C (rs2069514) and *1F (rs762551) variants and co-administration on pirfenidone blood concentrations and ADRs.
Methods: Forty-four patients were enrolled. The blood concentration of pirfenidone was determined using high-performance liquid chromatography. CYP1A2*1C and *1F genotypes were determined using direct SNP sequencing. Additional information related to drug associations was collected to screen factors affecting drug metabolism.
Results: The highest predictive value of ADRs was observed when the steady-state trough concentration of pirfenidone was 3.18 mcg·mL-1 and the area under the receiver operating characteristic curve was 0.701 (P = 0.024). The pirfenidone concentration-to-dose ratio (C/D) in CYP1A2*1F homozygous AA mutants was lower than that in C carriers (CC+AC) (1.28 ± 0.85 vs. 2.03 ± 1.28 mcg·mL-1; P = 0.036). Adverse drug reaction (ADR) incidence in the homozygous AA mutant group (28.0%) was significantly lower than that in the C carriers (CC+AC) (63.2%; P = 0.020), and ADR incidence in the A carriers (AC+AA) was considerably lower than that in the CC group (85.7%; P = 0.039). The C/D value of the combined lansoprazole/rabeprazole group was lower than that of the noncombination group (P < 0.05).
Conclusions: The ADR incidence was positively correlated with pirfenidone blood concentration. The CYP1A2 (rs762551) AA genotype is associated with lower pirfenidone concentrations and fewer ADRs. Lansoprazole/rabeprazole co-administration reduced pirfenidone concentrations. Randomized controlled trials should further explore personalized dosing of pirfenidone and combination therapies.
期刊介绍:
Therapeutic Drug Monitoring is a peer-reviewed, multidisciplinary journal directed to an audience of pharmacologists, clinical chemists, laboratorians, pharmacists, drug researchers and toxicologists. It fosters the exchange of knowledge among the various disciplines–clinical pharmacology, pathology, toxicology, analytical chemistry–that share a common interest in Therapeutic Drug Monitoring. The journal presents studies detailing the various factors that affect the rate and extent drugs are absorbed, metabolized, and excreted. Regular features include review articles on specific classes of drugs, original articles, case reports, technical notes, and continuing education articles.