Florin Musat , Kasper U Kjeldsen , Amelia E Rotaru , Song-Can Chen , Niculina Musat
{"title":"Archaea oxidizing alkanes through alkyl-coenzyme M reductases","authors":"Florin Musat , Kasper U Kjeldsen , Amelia E Rotaru , Song-Can Chen , Niculina Musat","doi":"10.1016/j.mib.2024.102486","DOIUrl":null,"url":null,"abstract":"<div><p>This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX–SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102486"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000626/pdfft?md5=c52b2cc3a7c1334a57966620f316f82b&pid=1-s2.0-S1369527424000626-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424000626","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX–SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.
这篇综述综述了最近发现的能够氧化高级烷烃(从乙烷等挥发性烷烃到十六烷等长链烷烃)的新型古细菌支系。这些古细菌被称为厌氧多碳烷烃氧化古细菌(ANKA),它们利用烷基辅酶 M 还原酶启动烷烃氧化,这种酶与产甲烷古细菌和厌氧养甲烷古细菌(ANME)的甲基辅酶 M 还原酶类似。包括厌氧甲烷古细菌和厌氧甲烷古细菌在内的多单胞烷烃氧化古细菌群(ALOX)拥有与烷烃链长相关的日益复杂的烷烃降解途径。我们讨论了这些途径的进化轨迹,强调了代谢创新和通过横向基因转移获得代谢模块。此外,我们还探讨了古细菌将烷烃氧化与电子受体还原相结合的机制,包括将电子传递给伙伴硫酸盐还原菌(SRB)。我们还讨论了形成 ALOX-SRB 关联的系统发育和功能限制。最后,我们强调了这一新兴研究领域的研究需求及其在生物技术中的潜在应用。
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes