Archaea oxidizing alkanes through alkyl-coenzyme M reductases

IF 5.9 2区 生物学 Q1 MICROBIOLOGY Current opinion in microbiology Pub Date : 2024-05-10 DOI:10.1016/j.mib.2024.102486
Florin Musat , Kasper U Kjeldsen , Amelia E Rotaru , Song-Can Chen , Niculina Musat
{"title":"Archaea oxidizing alkanes through alkyl-coenzyme M reductases","authors":"Florin Musat ,&nbsp;Kasper U Kjeldsen ,&nbsp;Amelia E Rotaru ,&nbsp;Song-Can Chen ,&nbsp;Niculina Musat","doi":"10.1016/j.mib.2024.102486","DOIUrl":null,"url":null,"abstract":"<div><p>This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX–SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102486"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000626/pdfft?md5=c52b2cc3a7c1334a57966620f316f82b&pid=1-s2.0-S1369527424000626-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424000626","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX–SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
古菌通过烷基辅酶 M 还原酶氧化烷烃
这篇综述综述了最近发现的能够氧化高级烷烃(从乙烷等挥发性烷烃到十六烷等长链烷烃)的新型古细菌支系。这些古细菌被称为厌氧多碳烷烃氧化古细菌(ANKA),它们利用烷基辅酶 M 还原酶启动烷烃氧化,这种酶与产甲烷古细菌和厌氧养甲烷古细菌(ANME)的甲基辅酶 M 还原酶类似。包括厌氧甲烷古细菌和厌氧甲烷古细菌在内的多单胞烷烃氧化古细菌群(ALOX)拥有与烷烃链长相关的日益复杂的烷烃降解途径。我们讨论了这些途径的进化轨迹,强调了代谢创新和通过横向基因转移获得代谢模块。此外,我们还探讨了古细菌将烷烃氧化与电子受体还原相结合的机制,包括将电子传递给伙伴硫酸盐还原菌(SRB)。我们还讨论了形成 ALOX-SRB 关联的系统发育和功能限制。最后,我们强调了这一新兴研究领域的研究需求及其在生物技术中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in microbiology
Current opinion in microbiology 生物-微生物学
CiteScore
10.00
自引率
0.00%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Host-microbe interactions: bacteria Cell regulation Environmental microbiology Host-microbe interactions: fungi/parasites/viruses Antimicrobials Microbial systems biology Growth and development: eukaryotes/prokaryotes
期刊最新文献
The promise of CRISPR-associated transposons for bacterial functional genomics Alginate catabolic systems in marine bacteria Dirammox (direct ammonia oxidation) to nitrogen (N2): discovery, current status, and perspectives Innovative approaches in the discovery of terpenoid natural products Revisiting the potential of natural products in antimycobacterial therapy: advances in drug discovery and semisynthetic solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1