{"title":"Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions","authors":"Nicolò Defenu , Alessio Lerose , Silvia Pappalardi","doi":"10.1016/j.physrep.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental progress in atomic, molecular, and optical platforms in the last decade has stimulated strong and broad interest in the quantum coherent dynamics of many <em>long-range interacting</em> particles. The prominent collective character of these systems enables novel non-equilibrium phenomena with no counterpart in conventional quantum systems with local interactions. Much of the theory work in this area either focussed on the impact of variable-range interaction tails on the physics of local interactions or relied on mean-field-like descriptions based on the opposite limit of all-to-all infinite-range interactions. In this Report, we present a systematic and organic review of recent advances in the field. Working with prototypical interacting quantum spin lattices without disorder, our presentation hinges upon a versatile theoretical formalism that interpolates between the few-body mean-field physics and the many-body physics of quasi-local interactions. Such a formalism allows us to connect these two regimes, providing both a formal quantitative tool and basic physical intuition. We leverage this unifying framework to review several findings of the last decade, including the peculiar non-ballistic spreading of quantum correlations, counter-intuitive slowdown of entanglement dynamics, suppression of thermalization and equilibration, anomalous scaling of defects upon traversing criticality, dynamical phase transitions, and genuinely non-equilibrium phases stabilized by periodic driving. The style of this Report is on the pedagogical side, which makes it accessible to readers without previous experience in the subject matter.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1074 ","pages":"Pages 1-92"},"PeriodicalIF":23.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370157324001406/pdfft?md5=cce61699016bbe48884f55dd21d44503&pid=1-s2.0-S0370157324001406-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324001406","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental progress in atomic, molecular, and optical platforms in the last decade has stimulated strong and broad interest in the quantum coherent dynamics of many long-range interacting particles. The prominent collective character of these systems enables novel non-equilibrium phenomena with no counterpart in conventional quantum systems with local interactions. Much of the theory work in this area either focussed on the impact of variable-range interaction tails on the physics of local interactions or relied on mean-field-like descriptions based on the opposite limit of all-to-all infinite-range interactions. In this Report, we present a systematic and organic review of recent advances in the field. Working with prototypical interacting quantum spin lattices without disorder, our presentation hinges upon a versatile theoretical formalism that interpolates between the few-body mean-field physics and the many-body physics of quasi-local interactions. Such a formalism allows us to connect these two regimes, providing both a formal quantitative tool and basic physical intuition. We leverage this unifying framework to review several findings of the last decade, including the peculiar non-ballistic spreading of quantum correlations, counter-intuitive slowdown of entanglement dynamics, suppression of thermalization and equilibration, anomalous scaling of defects upon traversing criticality, dynamical phase transitions, and genuinely non-equilibrium phases stabilized by periodic driving. The style of this Report is on the pedagogical side, which makes it accessible to readers without previous experience in the subject matter.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.