Stars have been recognized as optimal laboratories to probe axion properties. In the last decades there have been significant advances in this field due to a better modeling of stellar systems and accurate observational data. In this work we review the current status of constraints on axions from stellar physics. We focus in particular on the Sun, globular cluster stars, white dwarfs and (proto)-neutron stars.
{"title":"Axion astrophysics","authors":"Pierluca Carenza , Maurizio Giannotti , Jordi Isern , Alessandro Mirizzi , Oscar Straniero","doi":"10.1016/j.physrep.2025.02.002","DOIUrl":"10.1016/j.physrep.2025.02.002","url":null,"abstract":"<div><div>Stars have been recognized as optimal laboratories to probe axion properties. In the last decades there have been significant advances in this field due to a better modeling of stellar systems and accurate observational data. In this work we review the current status of constraints on axions from stellar physics. We focus in particular on the Sun, globular cluster stars, white dwarfs and (proto)-neutron stars.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1117 ","pages":"Pages 1-102"},"PeriodicalIF":23.9,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1016/j.physrep.2025.02.001
Dmitry A. Solovyev , Timur A. Zalialiutdinov , Aleksei A. Anikin , Leonti N. Labzowsky
In this review, we have investigated the asymmetry of the line profile in precision one- and two-photon spectroscopy of hydrogen and helium atoms within the framework of a rigorous QED approach. A detailed analysis of the angular correlations of the quantum interference effect has been carried out using various examples. Nonresonant effects are also considered in relation to some astrophysical problems. In particular, a rigorous QED derivation of the nonresonant extension for the Lorentz line profile is given using the Ly transition as an example; such a QED derivation has been lacking in the literature.
{"title":"The role of line profile asymmetry in precision spectroscopy","authors":"Dmitry A. Solovyev , Timur A. Zalialiutdinov , Aleksei A. Anikin , Leonti N. Labzowsky","doi":"10.1016/j.physrep.2025.02.001","DOIUrl":"10.1016/j.physrep.2025.02.001","url":null,"abstract":"<div><div>In this review, we have investigated the asymmetry of the line profile in precision one- and two-photon spectroscopy of hydrogen and helium atoms within the framework of a rigorous QED approach. A detailed analysis of the angular correlations of the quantum interference effect has been carried out using various examples. Nonresonant effects are also considered in relation to some astrophysical problems. In particular, a rigorous QED derivation of the nonresonant extension for the Lorentz line profile is given using the Ly <span><math><mi>α</mi></math></span> transition as an example; such a QED derivation has been lacking in the literature.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1114 ","pages":"Pages 1-40"},"PeriodicalIF":23.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1016/j.physrep.2025.01.006
Jiajun Xian , Minghui Liu , Xuan Cheng , Meiyi Yang , Tianshu Xie , Xiaomin Wang , Ming Liu , Yi-Cheng Zhang , Dan Yang , Gui-Quan Sun , Jinlin Ye
The infectious diseases spreading in real-world complex systems are exceptionally rapid and present rich spatiotemporal evolution patterns and critical phenomena at different scales. Using mathematical modelling approaches to study multiscale infectious diseases is crucial for understanding the rules of infectious diseases. This review comprehensively summarizes the latest advancements in multiscale infectious disease modelling, including microcosmic, mesoscopic and macroscopic scales, respectively, describing the infectious disease spreading in fact-to-fact contact (e.g., conference), metropolitan areas and globally. This review mainly presents the recent progress of the modelling approaches, the effects of complex systems scale, and the critical phenomena associated with them at the three scales. Finally, the challenges and the open issues for future studies for multiscale infectious disease modelling are also discussed.
{"title":"Modelling multiscale infectious disease in complex systems","authors":"Jiajun Xian , Minghui Liu , Xuan Cheng , Meiyi Yang , Tianshu Xie , Xiaomin Wang , Ming Liu , Yi-Cheng Zhang , Dan Yang , Gui-Quan Sun , Jinlin Ye","doi":"10.1016/j.physrep.2025.01.006","DOIUrl":"10.1016/j.physrep.2025.01.006","url":null,"abstract":"<div><div>The infectious diseases spreading in real-world complex systems are exceptionally rapid and present rich spatiotemporal evolution patterns and critical phenomena at different scales. Using mathematical modelling approaches to study multiscale infectious diseases is crucial for understanding the rules of infectious diseases. This review comprehensively summarizes the latest advancements in multiscale infectious disease modelling, including microcosmic, mesoscopic and macroscopic scales, respectively, describing the infectious disease spreading in fact-to-fact contact (e.g., conference), metropolitan areas and globally. This review mainly presents the recent progress of the modelling approaches, the effects of complex systems scale, and the critical phenomena associated with them at the three scales. Finally, the challenges and the open issues for future studies for multiscale infectious disease modelling are also discussed.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1113 ","pages":"Pages 1-57"},"PeriodicalIF":23.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-07DOI: 10.1016/j.physrep.2024.09.008
Ahmad Zarei , Liya Hooshyari , Sohrab Zaboli , Marzie Babaie Rabiee , Saeed Akhavan , Sadegh Seddighi , Mehrdad Mesgarpour , Somchai Wongwises , Michael Schlüter , Goodarz Ahmadi , Christos N. Markides , Yonghai Zhang , Jianzhong Lin , Omid Mahian
This article presents a comprehensive review of recent advancements in bubble-induced heat transfer enhancement, with a primary focus on understanding the fundamental underlying physics. Accordingly, this review first highlights recent novel concepts and techniques developed to enhance heat transfer through bubble injection, followed by explaining the essential physical aspects of this development. It attempts to clarify the impact of bubble injection on heat transfer by examining key mechanisms in two-phase bubbly flow. The factors that influence heat transfer and fluid flow, including mechanisms of bubble ascent, bubble breakage, and coalescence, as well as the impact of bubble size and shape, are examined. Furthermore, the review explores the use of bubble injection in different types of heat exchangers in addition to other applications, including solar collectors, hydrogen production, internal combustion engines, and energy storage systems. Furthermore, the article identifies current research gaps and existing challenges and suggests potential directions for future research in bubble-induced heat transfer enhancement.
{"title":"Bubble injection for heat transfer enhancement: From physics to applications","authors":"Ahmad Zarei , Liya Hooshyari , Sohrab Zaboli , Marzie Babaie Rabiee , Saeed Akhavan , Sadegh Seddighi , Mehrdad Mesgarpour , Somchai Wongwises , Michael Schlüter , Goodarz Ahmadi , Christos N. Markides , Yonghai Zhang , Jianzhong Lin , Omid Mahian","doi":"10.1016/j.physrep.2024.09.008","DOIUrl":"10.1016/j.physrep.2024.09.008","url":null,"abstract":"<div><div>This article presents a comprehensive review of recent advancements in bubble-induced heat transfer enhancement, with a primary focus on understanding the fundamental underlying physics. Accordingly, this review first highlights recent novel concepts and techniques developed to enhance heat transfer through bubble injection, followed by explaining the essential physical aspects of this development. It attempts to clarify the impact of bubble injection on heat transfer by examining key mechanisms in two-phase bubbly flow. The factors that influence heat transfer and fluid flow, including mechanisms of bubble ascent, bubble breakage, and coalescence, as well as the impact of bubble size and shape, are examined. Furthermore, the review explores the use of bubble injection in different types of heat exchangers in addition to other applications, including solar collectors, hydrogen production, internal combustion engines, and energy storage systems. Furthermore, the article identifies current research gaps and existing challenges and suggests potential directions for future research in bubble-induced heat transfer enhancement.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1112 ","pages":"Pages 1-117"},"PeriodicalIF":23.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143348270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.physrep.2025.01.005
Gui-Quan Sun , Runzi He , Li-Feng Hou , Xiaofeng Luo , Shupeng Gao , Lili Chang , Yi Wang , Zi-Ke Zhang
Infectious diseases have long been acknowledged as significant public health menaces by both the general public and health authorities, emphatically underscoring the crucial necessity for highly efficacious prevention and control strategies. Within the realm of statistical physics and complex systems, optimal control theory emerges as a fundamental and indispensable framework for formulating these preventive measures. Simultaneously, networked reaction–diffusion systems have emerged as essential tools for comprehensively understanding the complex dynamics of infectious disease transmission. These systems integrate diverse and essential aspects of human spatial behavior, including habitat distribution, small-world network properties, and large-scale movement patterns, key elements in the in-depth study of complex systems. Consequently, there is a rapidly burgeoning interest in exploring the optimal control problems associated with these reaction–diffusion equations. However, study on the complex dynamics and optimal control of network infectious disease models remains limited, especially in the context of higher-order networks that introduce additional layers of complexity. This article reviews recent advances in the dynamics and optimal control of networked reaction–diffusion systems, underscoring their vital and irreplaceable role in disease prevention and control. We deep dive into the dynamics within both regular and complex networks, investigating how network structure and diffusion parameters influence disease transmission. Furthermore, we comprehensively expound upon several optimal control strategies, including sparse and local optimal control, and propose a comprehensive approach that integrates both reaction and diffusion terms. Finally, we outline future research directions, emphasizing the great potential of integrated strategies to effectively tackle spatial disease transmission, thereby providing a solid theoretical foundation and practical guidance for related fields within the expansive domain of statistical physics and complex systems.
{"title":"Optimal control of spatial diseases spreading in networked reaction–diffusion systems","authors":"Gui-Quan Sun , Runzi He , Li-Feng Hou , Xiaofeng Luo , Shupeng Gao , Lili Chang , Yi Wang , Zi-Ke Zhang","doi":"10.1016/j.physrep.2025.01.005","DOIUrl":"10.1016/j.physrep.2025.01.005","url":null,"abstract":"<div><div>Infectious diseases have long been acknowledged as significant public health menaces by both the general public and health authorities, emphatically underscoring the crucial necessity for highly efficacious prevention and control strategies. Within the realm of statistical physics and complex systems, optimal control theory emerges as a fundamental and indispensable framework for formulating these preventive measures. Simultaneously, networked reaction–diffusion systems have emerged as essential tools for comprehensively understanding the complex dynamics of infectious disease transmission. These systems integrate diverse and essential aspects of human spatial behavior, including habitat distribution, small-world network properties, and large-scale movement patterns, key elements in the in-depth study of complex systems. Consequently, there is a rapidly burgeoning interest in exploring the optimal control problems associated with these reaction–diffusion equations. However, study on the complex dynamics and optimal control of network infectious disease models remains limited, especially in the context of higher-order networks that introduce additional layers of complexity. This article reviews recent advances in the dynamics and optimal control of networked reaction–diffusion systems, underscoring their vital and irreplaceable role in disease prevention and control. We deep dive into the dynamics within both regular and complex networks, investigating how network structure and diffusion parameters influence disease transmission. Furthermore, we comprehensively expound upon several optimal control strategies, including sparse and local optimal control, and propose a comprehensive approach that integrates both reaction and diffusion terms. Finally, we outline future research directions, emphasizing the great potential of integrated strategies to effectively tackle spatial disease transmission, thereby providing a solid theoretical foundation and practical guidance for related fields within the expansive domain of statistical physics and complex systems.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1111 ","pages":"Pages 1-64"},"PeriodicalIF":23.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143144477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1016/j.physrep.2025.01.002
Igor A. Lukyanchuk , Anna G. Razumnaya , Svitlana Kondovych , Yuri A. Tikhonov , Boris Khesin , Valerii M. Vinokur
The 21st century has witnessed a revolutionary shift in the understanding of properties of matter driven by the application of topological principles. While the traditional approach to material science has been focusing on local interactions, topology introduces a global, non-local description in which the geometry of a material profoundly influences its properties. Ferroelectric materials, with their spontaneous electric polarization, have long been essential for understanding fundamental physical phenomena, which have led to numerous practical applications. Recent discoveries have revealed that nanostructured ferroelectrics host a wealth of fundamental topological states, which effectively enrich the landscape of ferroelectric research. This Review explores the topological foundation of ferroelectricity, rooted in the electrostatic essence of these materials. Drawing upon the analogy between the hydrodynamics of incompressible fluids and the electrostatics of polarization fields, we establish a comprehensive framework for classifying the complex topological states observed in ferroelectrics. We demonstrate that the rich diversity of polarization structures can be exhaustively described using the advanced topological approach. By extending fundamental topological concepts such as helicity, fibration, foliation, and ergodicity, we offer a systematic analysis of the topological textures in ferroelectrics. This work provides a coherent framework for understanding and manipulating topological structures in nanostructured ferroelectrics, paving the way for innovations in materials science and technology.
{"title":"Topological foundations of ferroelectricity","authors":"Igor A. Lukyanchuk , Anna G. Razumnaya , Svitlana Kondovych , Yuri A. Tikhonov , Boris Khesin , Valerii M. Vinokur","doi":"10.1016/j.physrep.2025.01.002","DOIUrl":"10.1016/j.physrep.2025.01.002","url":null,"abstract":"<div><div>The 21st century has witnessed a revolutionary shift in the understanding of properties of matter driven by the application of topological principles. While the traditional approach to material science has been focusing on local interactions, topology introduces a global, non-local description in which the geometry of a material profoundly influences its properties. Ferroelectric materials, with their spontaneous electric polarization, have long been essential for understanding fundamental physical phenomena, which have led to numerous practical applications. Recent discoveries have revealed that nanostructured ferroelectrics host a wealth of fundamental topological states, which effectively enrich the landscape of ferroelectric research. This Review explores the topological foundation of ferroelectricity, rooted in the electrostatic essence of these materials. Drawing upon the analogy between the hydrodynamics of incompressible fluids and the electrostatics of polarization fields, we establish a comprehensive framework for classifying the complex topological states observed in ferroelectrics. We demonstrate that the rich diversity of polarization structures can be exhaustively described using the advanced topological approach. By extending fundamental topological concepts such as helicity, fibration, foliation, and ergodicity, we offer a systematic analysis of the topological textures in ferroelectrics. This work provides a coherent framework for understanding and manipulating topological structures in nanostructured ferroelectrics, paving the way for innovations in materials science and technology.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1110 ","pages":"Pages 1-56"},"PeriodicalIF":23.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1016/j.physrep.2024.12.005
Gui-Jun Ding , José W.F. Valle
The Standard Model lacks an organizing principle to describe quark and lepton “flavours”. Neutrino oscillation experiments show that leptons mix very differently from quarks, adding a major challenge to the flavour puzzle. We briefly sketch the seesaw and the dark-matter-mediated “scotogenic” neutrino mass generation approaches. We discuss the limitations of popular neutrino mixing patterns and examine the possibility that they arise from symmetry, giving a bottom-up approach to residual flavour and CP symmetries. We show how such family and/or CP symmetries can yield novel, viable and predictive mixing patterns. Model-independent ways to predict lepton mixing and neutrino mass sum rules are reviewed. We also discuss UV-complete flavour theories in four and more space–time dimensions. As benchmark examples we present an scotogenic construction with trimaximal mixing pattern TM2 and another with flavour symmetry and generalized CP symmetry. Higher-dimensional flavour completions are also briefly discussed, such as 5-D warped flavordynamics with a symmetry yielding a TM1 mixing pattern, detectable neutrinoless double beta decay rates and a very good global fit of flavour observables. We also mention 6-D orbifolds as a way to fix the structure of the 4-D family symmetry. We give a scotogenic benchmark orbifold model predicting the “golden” quark–lepton mass relation, stringent neutrino oscillation parameter regions, and an excellent global flavour fit, including quark observables. Finally, we discuss promising recent progress in tackling the flavour issue through the use of modular symmetries.
{"title":"The symmetry approach to quark and lepton masses and mixing","authors":"Gui-Jun Ding , José W.F. Valle","doi":"10.1016/j.physrep.2024.12.005","DOIUrl":"10.1016/j.physrep.2024.12.005","url":null,"abstract":"<div><div>The Standard Model lacks an organizing principle to describe quark and lepton “flavours”. Neutrino oscillation experiments show that leptons mix very differently from quarks, adding a major challenge to the flavour puzzle. We briefly sketch the seesaw and the dark-matter-mediated “scotogenic” neutrino mass generation approaches. We discuss the limitations of popular neutrino mixing patterns and examine the possibility that they arise from symmetry, giving a bottom-up approach to residual flavour and CP symmetries. We show how such family and/or CP symmetries can yield novel, viable and predictive mixing patterns. Model-independent ways to predict lepton mixing and neutrino mass sum rules are reviewed. We also discuss UV-complete flavour theories in four and more space–time dimensions. As benchmark examples we present an <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> scotogenic construction with trimaximal mixing pattern TM2 and another with <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> flavour symmetry and generalized CP symmetry. Higher-dimensional flavour completions are also briefly discussed, such as 5-D warped flavordynamics with a <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> symmetry yielding a TM1 mixing pattern, detectable neutrinoless double beta decay rates and a very good global fit of flavour observables. We also mention 6-D orbifolds as a way to fix the structure of the 4-D family symmetry. We give a scotogenic benchmark orbifold model predicting the “golden” quark–lepton mass relation, stringent neutrino oscillation parameter regions, and an excellent global flavour fit, including quark observables. Finally, we discuss promising recent progress in tackling the flavour issue through the use of modular symmetries.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1109 ","pages":"Pages 1-105"},"PeriodicalIF":23.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143177334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1016/j.physrep.2024.12.001
Ming-Zhu Liu , Ya-Wen Pan , Zhi-Wei Liu , Tian-Wei Wu , Jun-Xu Lu , Li-Sheng Geng
<div><div>In the past two decades, a plethora of hadronic states beyond the conventional quark model of <span><math><mrow><mi>q</mi><mover><mrow><mi>q</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span> mesons and <span><math><mrow><mi>q</mi><mi>q</mi><mi>q</mi></mrow></math></span> baryons have been observed experimentally, which motivated extensive studies to understand their nature and the non-perturbative strong interaction. Since most of these exotic states are located near the mass thresholds of a pair of conventional hadrons, the prevailing picture is that they are primarily hadronic molecules. In principle, one can verify the molecular nature of these states by thoroughly comparing their masses, decay widths, and production rates in a particular picture with experimental data. However, this is difficult or impossible. First, quantum mechanics allows for mixing configurations permitted by symmetries and quantum numbers. Second, data are relatively scarce because of their small production rates and the many difficulties in the experimental measurements. As a result, other alternatives need to be explored. This review summarizes three such approaches that can help disentangle the nature of the many exotic hadrons discovered.</div><div>In the first approach, based on the molecular interpretations for some exotic states, we study the likely existence of multiplets of hadronic molecules related by various symmetries, such as isospin symmetry, SU(3)-flavor symmetry, heavy quark spin/flavor symmetry, and heavy antiquark diquark symmetry, which are known to be approximately satisfied and can be employed to relate the underlying hadron–hadron interactions responsible for the formation of hadronic molecules. The masses of these multiplets of hadronic molecules can then be obtained by solving the Lippmann–Schwinger equation. Their decay and production patterns are also related. As a result, experimental discoveries of such multiplets and confirmations of the predicted patterns will be invaluable to understanding the nature of these hadronic molecular states.</div><div>In the second approach, starting from some hadronic molecular candidates, one can derive the underlying hadron–hadron interactions. With these interactions, one can study related three-body systems and check whether three-body bound states/resonances exist. The existence of such three-body molecules can directly verify the molecular nature of exotic hadrons of interest.</div><div>In the third approach, one can turn to the femtoscopy technique to derive the hadron–hadron interactions, hence inaccessible. This technique provided an unprecedented opportunity to understand the interactions between unstable hadrons. Although the past focus was mainly on the light quark sector, we have seen increasing theoretical activities in the heavy quark sector in recent years. We review relevant studies and point out future directions where more effort is needed.</div><div>Finally, to provid
{"title":"Three ways to decipher the nature of exotic hadrons: Multiplets, three-body hadronic molecules, and correlation functions","authors":"Ming-Zhu Liu , Ya-Wen Pan , Zhi-Wei Liu , Tian-Wei Wu , Jun-Xu Lu , Li-Sheng Geng","doi":"10.1016/j.physrep.2024.12.001","DOIUrl":"10.1016/j.physrep.2024.12.001","url":null,"abstract":"<div><div>In the past two decades, a plethora of hadronic states beyond the conventional quark model of <span><math><mrow><mi>q</mi><mover><mrow><mi>q</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span> mesons and <span><math><mrow><mi>q</mi><mi>q</mi><mi>q</mi></mrow></math></span> baryons have been observed experimentally, which motivated extensive studies to understand their nature and the non-perturbative strong interaction. Since most of these exotic states are located near the mass thresholds of a pair of conventional hadrons, the prevailing picture is that they are primarily hadronic molecules. In principle, one can verify the molecular nature of these states by thoroughly comparing their masses, decay widths, and production rates in a particular picture with experimental data. However, this is difficult or impossible. First, quantum mechanics allows for mixing configurations permitted by symmetries and quantum numbers. Second, data are relatively scarce because of their small production rates and the many difficulties in the experimental measurements. As a result, other alternatives need to be explored. This review summarizes three such approaches that can help disentangle the nature of the many exotic hadrons discovered.</div><div>In the first approach, based on the molecular interpretations for some exotic states, we study the likely existence of multiplets of hadronic molecules related by various symmetries, such as isospin symmetry, SU(3)-flavor symmetry, heavy quark spin/flavor symmetry, and heavy antiquark diquark symmetry, which are known to be approximately satisfied and can be employed to relate the underlying hadron–hadron interactions responsible for the formation of hadronic molecules. The masses of these multiplets of hadronic molecules can then be obtained by solving the Lippmann–Schwinger equation. Their decay and production patterns are also related. As a result, experimental discoveries of such multiplets and confirmations of the predicted patterns will be invaluable to understanding the nature of these hadronic molecular states.</div><div>In the second approach, starting from some hadronic molecular candidates, one can derive the underlying hadron–hadron interactions. With these interactions, one can study related three-body systems and check whether three-body bound states/resonances exist. The existence of such three-body molecules can directly verify the molecular nature of exotic hadrons of interest.</div><div>In the third approach, one can turn to the femtoscopy technique to derive the hadron–hadron interactions, hence inaccessible. This technique provided an unprecedented opportunity to understand the interactions between unstable hadrons. Although the past focus was mainly on the light quark sector, we have seen increasing theoretical activities in the heavy quark sector in recent years. We review relevant studies and point out future directions where more effort is needed.</div><div>Finally, to provid","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1108 ","pages":"Pages 1-108"},"PeriodicalIF":23.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143157692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1016/j.physrep.2024.11.006
Rui Tang , Ziyun Yong , Shuyu Jiang , Xingshu Chen , Yaofang Liu , Yi-Cheng Zhang , Gui-Quan Sun , Wei Wang
Complex networks are frequently employed to model physical or virtual complex systems. When certain entities exist across multiple systems simultaneously, unveiling their corresponding relationships across the networks becomes crucial. This problem, known as network alignment, holds significant importance. It enhances our understanding of complex system structures and behaviours, facilitates the validation and extension of theoretical physics research about studying complex systems, and fosters diverse practical applications across various fields. However, due to variations in the structure, characteristics, and properties of complex networks across different fields, the study of network alignment is often isolated within each domain, with even the terminologies and concepts lacking uniformity. This review comprehensively summarizes the latest advancements in network alignment research, focusing on analysing network alignment characteristics and progress in various domains such as social network analysis, bioinformatics, computational linguistics and privacy protection. It provides a detailed analysis of various methods’ implementation principles, processes, and performance differences, including structure consistency-based methods, network embedding-based methods, and graph neural network-based (GNN-based) methods. Additionally, the methods for network alignment under different conditions, such as in attributed networks, heterogeneous networks, directed networks, and dynamic networks, are presented. Furthermore, the challenges and the open issues for future studies are also discussed.
{"title":"Network alignment","authors":"Rui Tang , Ziyun Yong , Shuyu Jiang , Xingshu Chen , Yaofang Liu , Yi-Cheng Zhang , Gui-Quan Sun , Wei Wang","doi":"10.1016/j.physrep.2024.11.006","DOIUrl":"10.1016/j.physrep.2024.11.006","url":null,"abstract":"<div><div>Complex networks are frequently employed to model physical or virtual complex systems. When certain entities exist across multiple systems simultaneously, unveiling their corresponding relationships across the networks becomes crucial. This problem, known as network alignment, holds significant importance. It enhances our understanding of complex system structures and behaviours, facilitates the validation and extension of theoretical physics research about studying complex systems, and fosters diverse practical applications across various fields. However, due to variations in the structure, characteristics, and properties of complex networks across different fields, the study of network alignment is often isolated within each domain, with even the terminologies and concepts lacking uniformity. This review comprehensively summarizes the latest advancements in network alignment research, focusing on analysing network alignment characteristics and progress in various domains such as social network analysis, bioinformatics, computational linguistics and privacy protection. It provides a detailed analysis of various methods’ implementation principles, processes, and performance differences, including structure consistency-based methods, network embedding-based methods, and graph neural network-based (GNN-based) methods. Additionally, the methods for network alignment under different conditions, such as in attributed networks, heterogeneous networks, directed networks, and dynamic networks, are presented. Furthermore, the challenges and the open issues for future studies are also discussed.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1107 ","pages":"Pages 1-45"},"PeriodicalIF":23.9,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.physrep.2024.11.004
Alexander M. Akulshin , Dmitry Budker , Felipe Pedreros Bustos , Tong Dang , Emmanuel Klinger , Simon M. Rochester , Arne Wickenbrock , Rui Zhang
Sensitive magnetometers have been applied in a wide range of research fields, including geophysical exploration, bio-magnetic field detection, ultralow-field nuclear magnetic resonance, etc. Commonly, magnetometers are directly placed at the position where the magnetic field is to be measured. However, in some situations, for example in near space or harsh environments, near nuclear reactors or particle accelerators, it is hard to place a magnetometer directly there. If the magnetic field can be detected remotely, i.e., via stand-off detection, this problem can be solved. As optical magnetometers are based on optical readout, they are naturally promising for stand-off detection. We review various approaches to optical stand-off magnetometry proposed and developed over the years, culminating in recent results on measuring magnetic fields in the mesosphere using laser guide stars, magnetometry with mirrorless-lasing readout, and proposals for satellite-assisted interrogation of atmospheric sodium.
{"title":"Remote detection optical magnetometry","authors":"Alexander M. Akulshin , Dmitry Budker , Felipe Pedreros Bustos , Tong Dang , Emmanuel Klinger , Simon M. Rochester , Arne Wickenbrock , Rui Zhang","doi":"10.1016/j.physrep.2024.11.004","DOIUrl":"10.1016/j.physrep.2024.11.004","url":null,"abstract":"<div><div>Sensitive magnetometers have been applied in a wide range of research fields, including geophysical exploration, bio-magnetic field detection, ultralow-field nuclear magnetic resonance, etc. Commonly, magnetometers are directly placed at the position where the magnetic field is to be measured. However, in some situations, for example in near space or harsh environments, near nuclear reactors or particle accelerators, it is hard to place a magnetometer directly there. If the magnetic field can be detected remotely, i.e., via stand-off detection, this problem can be solved. As optical magnetometers are based on optical readout, they are naturally promising for stand-off detection. We review various approaches to optical stand-off magnetometry proposed and developed over the years, culminating in recent results on measuring magnetic fields in the mesosphere using laser guide stars, magnetometry with mirrorless-lasing readout, and proposals for satellite-assisted interrogation of atmospheric sodium.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1106 ","pages":"Pages 1-32"},"PeriodicalIF":23.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}