Harnessing large language models over transformer models for detecting Bengali depressive social media text: A comprehensive study

Ahmadul Karim Chowdhury , Saidur Rahman Sujon , Md. Shirajus Salekin Shafi , Tasin Ahmmad , Sifat Ahmed , Khan Md Hasib , Faisal Muhammad Shah
{"title":"Harnessing large language models over transformer models for detecting Bengali depressive social media text: A comprehensive study","authors":"Ahmadul Karim Chowdhury ,&nbsp;Saidur Rahman Sujon ,&nbsp;Md. Shirajus Salekin Shafi ,&nbsp;Tasin Ahmmad ,&nbsp;Sifat Ahmed ,&nbsp;Khan Md Hasib ,&nbsp;Faisal Muhammad Shah","doi":"10.1016/j.nlp.2024.100075","DOIUrl":null,"url":null,"abstract":"<div><p>In an era where the silent struggle of underdiagnosed depression pervades globally, our research delves into the crucial link between mental health and social media. This work focuses on early detection of depression, particularly in extroverted social media users, using LLMs such as GPT 3.5, GPT 4 and our proposed GPT 3.5 fine-tuned model DepGPT, as well as advanced Deep learning models(LSTM, Bi-LSTM, GRU, BiGRU) and Transformer models(BERT, BanglaBERT, SahajBERT, BanglaBERT-Base). The study categorized Reddit and X datasets into “Depressive” and “Non-Depressive” segments, translated into Bengali by native speakers with expertise in mental health, resulting in the creation of the Bengali Social Media Depressive Dataset (BSMDD). Our work provides full architecture details for each model and a methodical way to assess their performance in Bengali depressive text categorization using zero-shot and few-shot learning techniques. Our work demonstrates the superiority of SahajBERT and Bi-LSTM with FastText embeddings in their respective domains also tackles explainability issues with transformer models and emphasizes the effectiveness of LLMs, especially DepGPT (GPT 3.5 fine-tuned), demonstrating flexibility and competence in a range of learning contexts. According to the experiment results, the proposed model, DepGPT, outperformed not only Alpaca Lora 7B in zero-shot and few-shot scenarios but also every other model, achieving a near-perfect accuracy of 0.9796 and an F1-score of 0.9804, high recall, and exceptional precision. Although competitive, GPT-3.5 Turbo and Alpaca Lora 7B show relatively poorer effectiveness in zero-shot and few-shot situations. The work emphasizes the effectiveness and flexibility of LLMs in a variety of linguistic circumstances, providing insightful information about the complex field of depression detection models.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"7 ","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000232/pdfft?md5=6264329603560d04e05467aa89f65a60&pid=1-s2.0-S2949719124000232-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In an era where the silent struggle of underdiagnosed depression pervades globally, our research delves into the crucial link between mental health and social media. This work focuses on early detection of depression, particularly in extroverted social media users, using LLMs such as GPT 3.5, GPT 4 and our proposed GPT 3.5 fine-tuned model DepGPT, as well as advanced Deep learning models(LSTM, Bi-LSTM, GRU, BiGRU) and Transformer models(BERT, BanglaBERT, SahajBERT, BanglaBERT-Base). The study categorized Reddit and X datasets into “Depressive” and “Non-Depressive” segments, translated into Bengali by native speakers with expertise in mental health, resulting in the creation of the Bengali Social Media Depressive Dataset (BSMDD). Our work provides full architecture details for each model and a methodical way to assess their performance in Bengali depressive text categorization using zero-shot and few-shot learning techniques. Our work demonstrates the superiority of SahajBERT and Bi-LSTM with FastText embeddings in their respective domains also tackles explainability issues with transformer models and emphasizes the effectiveness of LLMs, especially DepGPT (GPT 3.5 fine-tuned), demonstrating flexibility and competence in a range of learning contexts. According to the experiment results, the proposed model, DepGPT, outperformed not only Alpaca Lora 7B in zero-shot and few-shot scenarios but also every other model, achieving a near-perfect accuracy of 0.9796 and an F1-score of 0.9804, high recall, and exceptional precision. Although competitive, GPT-3.5 Turbo and Alpaca Lora 7B show relatively poorer effectiveness in zero-shot and few-shot situations. The work emphasizes the effectiveness and flexibility of LLMs in a variety of linguistic circumstances, providing insightful information about the complex field of depression detection models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大语言模型而非转换器模型检测孟加拉语抑郁社交媒体文本综合研究
在抑郁症诊断不足的无声斗争弥漫全球的时代,我们的研究深入探讨了心理健康与社交媒体之间的重要联系。这项工作的重点是利用 GPT 3.5、GPT 4 和我们提出的 GPT 3.5 微调模型 DepGPT 等 LLM,以及高级深度学习模型(LSTM、Bi-LSTM、GRU、BiGRU)和 Transformer 模型(BERT、BanglaBERT、SahajBERT、BanglaBERT-Base),早期检测抑郁症,尤其是外向型社交媒体用户的抑郁症。该研究将 Reddit 和 X 数据集分为 "抑郁 "和 "非抑郁 "两个部分,并由具有心理健康专业知识的母语人士翻译成孟加拉语,从而创建了孟加拉语社交媒体抑郁数据集(BSMDD)。我们的工作为每个模型提供了完整的架构细节,并提供了一种方法来评估它们在孟加拉语抑郁文本分类中使用零点学习和少点学习技术的性能。我们的工作证明了 SahajBERT 和带有 FastText 嵌入的 Bi-LSTM 在各自领域的优越性,还解决了转换器模型的可解释性问题,并强调了 LLM 的有效性,尤其是 DepGPT(GPT 3.5 微调),在一系列学习环境中展示了灵活性和能力。实验结果表明,所提出的模型 DepGPT 不仅在零次和少次场景中的表现优于 Alpaca Lora 7B,而且还优于其他所有模型,达到了接近完美的 0.9796 准确率和 0.9804 的 F1 分数、高召回率和卓越的精确度。GPT-3.5 Turbo 和 Alpaca Lora 7B 虽然具有竞争力,但在零次和少次情况下的有效性相对较差。这项工作强调了 LLM 在各种语言环境中的有效性和灵活性,为复杂的抑郁检测模型领域提供了深刻的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uzbek language morphology analyser Evaluation of google translate for Mandarin Chinese translation using sentiment and semantic analysis Bridging gaps in natural language processing for Yorùbá: A systematic review of a decade of progress and prospects Llama3SP: A resource-Efficient large language model for agile story point estimation A systematic review of figurative language detection: Methods, challenges, and multilingual perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1