Fates of slurry-nitrogen applied to mountain grasslands: the importance of dinitrogen emissions versus plant N uptake

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-05-10 DOI:10.1007/s00374-024-01826-9
Michael Dannenmann, Irina Yankelzon, Svenja Wähling, Elisabeth Ramm, Mirella Schreiber, Ulrike Ostler, Marcus Schlingmann, Claus Florian Stange, Ralf Kiese, Klaus Butterbach-Bahl, Johannes Friedl, Clemens Scheer
{"title":"Fates of slurry-nitrogen applied to mountain grasslands: the importance of dinitrogen emissions versus plant N uptake","authors":"Michael Dannenmann, Irina Yankelzon, Svenja Wähling, Elisabeth Ramm, Mirella Schreiber, Ulrike Ostler, Marcus Schlingmann, Claus Florian Stange, Ralf Kiese, Klaus Butterbach-Bahl, Johannes Friedl, Clemens Scheer","doi":"10.1007/s00374-024-01826-9","DOIUrl":null,"url":null,"abstract":"<p>Intensive fertilization of grasslands with cattle slurry can cause high environmental nitrogen (N) losses in form of ammonia (NH<sub>3</sub>), nitrous oxide (N<sub>2</sub>O), and nitrate (NO<sub>3</sub><sup>−</sup>) leaching. Still, knowledge on short-term fertilizer N partitioning between plants and dinitrogen (N<sub>2</sub>) emissions is lacking. Therefore, we applied highly <sup>15</sup>N-enriched cattle slurry (97 kg N ha<sup>−1</sup>) to pre-alpine grassland field mesocosms. We traced the slurry <sup>15</sup>N in the plant-soil system and to denitrification losses (N<sub>2</sub>, N<sub>2</sub>O) over 29 days in high temporal resolution. Gaseous ammonia (NH<sub>3</sub>), N<sub>2</sub> as well N<sub>2</sub>O losses at about 20 kg N ha<sup>−1</sup> were observed only within the first 3 days after fertilization and were dominated by NH<sub>3</sub>. Nitrous oxide emissions (0.1 kg N ha<sup>−1</sup>) were negligible, while N<sub>2</sub> emissions accounted for 3 kg of fertilizer N ha<sup>−1</sup>. The relatively low denitrification losses can be explained by the rapid plant uptake of fertilizer N, particularly from 0–4 cm depth, with plant N uptake exceeding denitrification N losses by an order of magnitude already after 3 days. After 17 days, total aboveground plant N uptake reached 100 kg N ha<sup>−1</sup>, with 33% of N derived from the applied N fertilizer. Half of the fertilizer N was found in above and belowground biomass, while at about 25% was recovered in the soil and 25% was lost, mainly in form of gaseous emissions, with minor N leaching. Overall, this study shows that plant N uptake plays a dominant role in controlling denitrification losses at high N application rates in pre-alpine grassland soils.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01826-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Intensive fertilization of grasslands with cattle slurry can cause high environmental nitrogen (N) losses in form of ammonia (NH3), nitrous oxide (N2O), and nitrate (NO3) leaching. Still, knowledge on short-term fertilizer N partitioning between plants and dinitrogen (N2) emissions is lacking. Therefore, we applied highly 15N-enriched cattle slurry (97 kg N ha−1) to pre-alpine grassland field mesocosms. We traced the slurry 15N in the plant-soil system and to denitrification losses (N2, N2O) over 29 days in high temporal resolution. Gaseous ammonia (NH3), N2 as well N2O losses at about 20 kg N ha−1 were observed only within the first 3 days after fertilization and were dominated by NH3. Nitrous oxide emissions (0.1 kg N ha−1) were negligible, while N2 emissions accounted for 3 kg of fertilizer N ha−1. The relatively low denitrification losses can be explained by the rapid plant uptake of fertilizer N, particularly from 0–4 cm depth, with plant N uptake exceeding denitrification N losses by an order of magnitude already after 3 days. After 17 days, total aboveground plant N uptake reached 100 kg N ha−1, with 33% of N derived from the applied N fertilizer. Half of the fertilizer N was found in above and belowground biomass, while at about 25% was recovered in the soil and 25% was lost, mainly in form of gaseous emissions, with minor N leaching. Overall, this study shows that plant N uptake plays a dominant role in controlling denitrification losses at high N application rates in pre-alpine grassland soils.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
施用于山地草地的泥浆氮的命运:二氮排放与植物氮吸收的重要性
用牛粪对草地进行密集施肥会导致环境中氮(N)以氨(NH3)、一氧化二氮(N2O)和硝酸盐(NO3-)浸出的形式大量流失。然而,有关植物间短期肥料氮分配和二氮(N2)排放的知识仍然缺乏。因此,我们在高山前草地的田间中型模拟实验中施用了高15N富集的牛粪(每公顷97千克氮)。我们对植物-土壤系统中的泥浆 15N 以及 29 天内的反硝化损失(N2、N2O)进行了高时间分辨率的追踪。气态氨(NH3)、N2 和 N2O 的损失(每公顷约 20 千克氮)仅在施肥后的头 3 天内观察到,且主要是 NH3。氧化亚氮的排放量(0.1 千克氮公顷-1)可以忽略不计,而 N2 的排放量则占肥料氮公顷-1 的 3 千克。反硝化损失相对较低的原因是植物对肥料氮的快速吸收,尤其是在 0-4 厘米深处,3 天后植物对氮的吸收量就已经超过了反硝化氮损失量的一个数量级。17 天后,植物地上部吸收的氮总量达到 100 千克/公顷,其中 33% 的氮来自施用的氮肥。肥料中的氮有一半存在于地上和地下生物量中,约 25% 在土壤中回收,25% 主要以气体排放的形式流失,还有少量的氮被沥滤。总之,这项研究表明,在高氮肥施用率的前高山草地土壤中,植物对氮的吸收在控制反硝化损失方面起着主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau Inoculation of the Morchella importuna mycosphere with Pseudomonas chlororaphis alleviated a soil-borne disease caused by Paecilomyces penicillatus Solid-state nuclear magnetic resonance at low-field as an approach for fertiliser dissolution monitoring Pre-sowing recurrent inoculation with Pseudomonas fluorescens promotes maize growth Interactive effects of plant litter chemistry and organic/inorganic forms of nitrogen addition on Moso bamboo (Phyllostachys edulis) soil respiration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1