Post-synthesis tuning of dielectric constant via ferroelectric domain wall engineering

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-05-09 DOI:10.1016/j.matt.2024.04.024
Lima Zhou, Lukas Puntigam, Peter Lunkenheimer, Edith Bourret, Zewu Yan, István Kézsmárki, Dennis Meier, Stephan Krohns, Jan Schultheiß, Donald M. Evans
{"title":"Post-synthesis tuning of dielectric constant via ferroelectric domain wall engineering","authors":"Lima Zhou, Lukas Puntigam, Peter Lunkenheimer, Edith Bourret, Zewu Yan, István Kézsmárki, Dennis Meier, Stephan Krohns, Jan Schultheiß, Donald M. Evans","doi":"10.1016/j.matt.2024.04.024","DOIUrl":null,"url":null,"abstract":"<p>A promising mechanism for achieving colossal dielectric constants involves the use of insulating internal barrier layers, such as insulating domain walls in ferroelectrics. A key advantage of domain walls, compared to other stationary interfaces, is their mobility, offering the potential for post-synthesis adjustment of the dielectric constant. In this work, we demonstrate that altering the domain wall density enables the tuning of the dielectric constant in our template material, i.e., hexagonal ErMnO<sub>3</sub> single crystals. Through microscopy and macroscopic dielectric spectroscopy, we quantify changes in domain wall density and correlated these with changes in dielectric constant within a single sample. Analysis of the dielectric data suggests that the insulating domain walls act as “ideal” capacitors connected in series. Our approach to engineering the domain wall density can be readily extended to other control methods, e.g., electric fields or mechanical stresses, providing a degree of flexibility to <em>in situ</em> tune the dielectric constant.</p>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.04.024","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A promising mechanism for achieving colossal dielectric constants involves the use of insulating internal barrier layers, such as insulating domain walls in ferroelectrics. A key advantage of domain walls, compared to other stationary interfaces, is their mobility, offering the potential for post-synthesis adjustment of the dielectric constant. In this work, we demonstrate that altering the domain wall density enables the tuning of the dielectric constant in our template material, i.e., hexagonal ErMnO3 single crystals. Through microscopy and macroscopic dielectric spectroscopy, we quantify changes in domain wall density and correlated these with changes in dielectric constant within a single sample. Analysis of the dielectric data suggests that the insulating domain walls act as “ideal” capacitors connected in series. Our approach to engineering the domain wall density can be readily extended to other control methods, e.g., electric fields or mechanical stresses, providing a degree of flexibility to in situ tune the dielectric constant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过铁电畴壁工程在合成后调整介电常数
实现超大介电常数的一个可行机制是使用绝缘内部阻挡层,如铁电中的绝缘畴壁。与其他固定界面相比,畴壁的一个关键优势在于其流动性,为合成后调整介电常数提供了可能性。在这项工作中,我们证明了改变畴壁密度可以调整模板材料(即六方 ErMnO3 单晶)的介电常数。通过显微镜和宏观介电光谱,我们量化了畴壁密度的变化,并将其与单个样品中介电常数的变化联系起来。对介电数据的分析表明,绝缘畴壁就像一个串联的 "理想 "电容器。我们设计畴壁密度的方法可以很容易地扩展到其他控制方法,如电场或机械应力,从而为原位调节介电常数提供了一定程度的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles Discovery of a novel low-cost medium-entropy stainless steel with exceptional mechanical behavior over a wide temperature range Unlocking lithium ion conduction in lithium metal fluorides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1