Establishing the temporal stability of machine learning models that detect online gambling-related harms

IF 4.9 Q1 PSYCHOLOGY, EXPERIMENTAL Computers in human behavior reports Pub Date : 2024-05-01 DOI:10.1016/j.chbr.2024.100427
W. Spencer Murch, Sylvia Kairouz, Martin French
{"title":"Establishing the temporal stability of machine learning models that detect online gambling-related harms","authors":"W. Spencer Murch,&nbsp;Sylvia Kairouz,&nbsp;Martin French","doi":"10.1016/j.chbr.2024.100427","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Intelligence (AI) models can detect at-risk online gamblers by analyzing patterns in their betting behaviour, but their performance over time has not been assessed. Linking online gamblers’ self-reported gambling problems to their transactional gambling data, we investigated the temporal stability of online gambling behaviours at two timepoints (2019–2022). We then assessed the impacts of shifting gambling behaviours on the performance of two previously-validated AI harm detection models.</p><p>Adult users of a Canadian online gambling website (n<sub>2019</sub> = 9,145, n<sub>2022</sub> = 11,258) completed the Problem Gambling Severity Index (PGSI), a validated questionnaire examining past-year gambling problems. Population Stability Index assessed the temporal stability of 10 previously-validated indicators of problematic online gambling. Two AI models were then revalidated using overall and threshold-dependent performance metrics.</p><p>All measured indicators of problematic online gambling behaviour shifted significantly from 2019 to 2022 (all <em>p</em> &lt; 0.001). Existing AI models showed significant changes in Area Under the Precision-Recall Curve (PGSI 5+ ΔAUPRC = +2.87%; <em>t</em>(20401) = 2.83, <em>p</em> = 0.004; PGSI 8+ ΔAUPRC = +7.06%; <em>t</em>(20401) = 7.21, <em>p</em> &lt; 0.001). Adjusting these models’ decision thresholds realigned their classification performance with originally-validated levels. These results support the use of AI for online gambling harm detection.</p></div>","PeriodicalId":72681,"journal":{"name":"Computers in human behavior reports","volume":"14 ","pages":"Article 100427"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451958824000605/pdfft?md5=de746344f29ecd6d7c4bbf74a0eaab7b&pid=1-s2.0-S2451958824000605-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in human behavior reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451958824000605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) models can detect at-risk online gamblers by analyzing patterns in their betting behaviour, but their performance over time has not been assessed. Linking online gamblers’ self-reported gambling problems to their transactional gambling data, we investigated the temporal stability of online gambling behaviours at two timepoints (2019–2022). We then assessed the impacts of shifting gambling behaviours on the performance of two previously-validated AI harm detection models.

Adult users of a Canadian online gambling website (n2019 = 9,145, n2022 = 11,258) completed the Problem Gambling Severity Index (PGSI), a validated questionnaire examining past-year gambling problems. Population Stability Index assessed the temporal stability of 10 previously-validated indicators of problematic online gambling. Two AI models were then revalidated using overall and threshold-dependent performance metrics.

All measured indicators of problematic online gambling behaviour shifted significantly from 2019 to 2022 (all p < 0.001). Existing AI models showed significant changes in Area Under the Precision-Recall Curve (PGSI 5+ ΔAUPRC = +2.87%; t(20401) = 2.83, p = 0.004; PGSI 8+ ΔAUPRC = +7.06%; t(20401) = 7.21, p < 0.001). Adjusting these models’ decision thresholds realigned their classification performance with originally-validated levels. These results support the use of AI for online gambling harm detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立检测网络赌博相关危害的机器学习模型的时间稳定性
人工智能(AI)模型可以通过分析在线赌徒的博彩行为模式来检测他们的风险,但其随时间变化的表现尚未得到评估。我们将在线赌徒自我报告的赌博问题与他们的交易赌博数据联系起来,调查了两个时间点(2019-2022 年)在线赌博行为的时间稳定性。加拿大一家在线赌博网站的成年用户(n2019 = 9,145, n2022 = 11,258)填写了问题赌博严重程度指数(PGSI),这是一份经过验证的调查问卷,用于调查过去一年的赌博问题。人口稳定性指数评估了 10 个先前经过验证的问题网络赌博指标的时间稳定性。所有测量的问题网络赌博行为指标从 2019 年到 2022 年都发生了显著变化(所有 p < 0.001)。现有人工智能模型的精确度-召回曲线下面积(PGSI 5+ ΔAUPRC = +2.87%;t(20401) = 2.83,p = 0.004;PGSI 8+ ΔAUPRC = +7.06%;t(20401) = 7.21,p <0.001)发生了显著变化。调整这些模型的决策阈值后,它们的分类性能重新达到了最初验证的水平。这些结果支持将人工智能用于网络赌博危害检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
期刊最新文献
The impact of social media reports on nurses’ job satisfaction: A cross-section suvery I Don't matter anyway. Will more Instagram change that? Anti-mattering and Instagram Feed vs. stories addiction symptoms: The moderating roles of loneliness and life satisfaction Surprising gender biases in GPT IT really matters: Associations of computer hassles and technical support with medically certified sickness absence due to mental health complaints Effect of business intelligence on organizational competitiveness- exploring the mediation of technology anxiety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1