Argon nonthermal plasma etching of poly(L-lactic acid) films: Tunning the local surface degradation and hydrolytic degradation rate

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED Reactive & Functional Polymers Pub Date : 2024-04-27 DOI:10.1016/j.reactfunctpolym.2024.105921
Daniel J. da Silva, Luiz H. Catalani
{"title":"Argon nonthermal plasma etching of poly(L-lactic acid) films: Tunning the local surface degradation and hydrolytic degradation rate","authors":"Daniel J. da Silva,&nbsp;Luiz H. Catalani","doi":"10.1016/j.reactfunctpolym.2024.105921","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma technology is widely used in the industry for the surface modification of polymeric materials, improving the adhesion of paints in polymeric packaging and cellular adhesion on polymers' surfaces without using hazardous chemicals. Plasma etching is a fast way to modify polymers, creating new nanostructure surfaces and adding chemical groups for new applications like antimicrobial surfaces. Poly(L-lactic acid) (PLLA) is a biodegradable polymer with exciting properties for biomedical, tissue engineering, food packaging, and other applications. In many cases, these products must undergo plasma surface treatments to meet the technical requirements of their function. Herein, we evaluated the effects of surface modification of PLLA using Argon nonthermal plasma etching. The results from Gel Permeation Chromatography (GPC), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Excited Photoelectron Spectroscopy (XPS), and Matrix-assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF-MS) show that increasing the plasma exposure time causes an enhancement in bulk and local surface degradation, crystallization kinetics and susceptibility to hydrolytic degradation for PLLA. Atomic Force Microscopy (AFM) show that the PLLA films present the highest surface roughness after 60 s of plasma etching times. Our findings suggest that plasma etching can be a suitable tool to adjust the polymer degradation rate to design intracorporeal devices with controlled degradation kinetics.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824000968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma technology is widely used in the industry for the surface modification of polymeric materials, improving the adhesion of paints in polymeric packaging and cellular adhesion on polymers' surfaces without using hazardous chemicals. Plasma etching is a fast way to modify polymers, creating new nanostructure surfaces and adding chemical groups for new applications like antimicrobial surfaces. Poly(L-lactic acid) (PLLA) is a biodegradable polymer with exciting properties for biomedical, tissue engineering, food packaging, and other applications. In many cases, these products must undergo plasma surface treatments to meet the technical requirements of their function. Herein, we evaluated the effects of surface modification of PLLA using Argon nonthermal plasma etching. The results from Gel Permeation Chromatography (GPC), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Excited Photoelectron Spectroscopy (XPS), and Matrix-assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF-MS) show that increasing the plasma exposure time causes an enhancement in bulk and local surface degradation, crystallization kinetics and susceptibility to hydrolytic degradation for PLLA. Atomic Force Microscopy (AFM) show that the PLLA films present the highest surface roughness after 60 s of plasma etching times. Our findings suggest that plasma etching can be a suitable tool to adjust the polymer degradation rate to design intracorporeal devices with controlled degradation kinetics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氩气非热等离子体蚀刻聚(L-乳酸)薄膜:调节局部表面降解和水解降解率
等离子技术在工业中被广泛用于聚合物材料的表面改性、改善聚合物包装中涂料的附着力以及聚合物表面的细胞附着力,而无需使用有害化学物质。等离子体蚀刻是一种快速改性聚合物的方法,它可以创造出新的纳米结构表面,并添加化学基团以实现抗菌表面等新应用。聚乳酸(PLLA)是一种可生物降解的聚合物,具有令人兴奋的特性,可用于生物医学、组织工程、食品包装和其他应用领域。在许多情况下,这些产品必须经过等离子表面处理才能满足其功能的技术要求。在此,我们评估了使用氩气非热等离子体蚀刻对聚乳酸进行表面改性的效果。凝胶渗透色谱法 (GPC)、热重分析法 (TGA)、差示扫描量热法 (DSC)、X 射线激发光电子能谱法 (XPS) 和基质辅助激光解吸电离飞行时间质谱法 (MALDI-ToF-MS) 的研究结果表明,增加等离子体暴露时间会导致聚乳酸的整体和局部表面降解、结晶动力学和水解降解敏感性增强。原子力显微镜 (AFM) 显示,等离子刻蚀 60 秒后,聚乳酸薄膜的表面粗糙度最高。我们的研究结果表明,等离子体刻蚀是调整聚合物降解速率的合适工具,可用于设计具有可控降解动力学的体外设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
期刊最新文献
Retraction notice to “KCl nanoparticles-loaded octaphenylsilsesquioxane as an efficient flame retardant for polycarbonate” [Reactive and Functional Polymers 177 (2022) 105284] Photoactive fluorenyl-functionalized polypropylene for high-performance dielectrics Mechanical stable, self-healing and reprocessable multifunctional polymer with dynamic piperazine-hindered urea bonds Novel bio-based propylene-derived phthalonitrile compounds: Synthesis, curing behavior and thermal properties Tough, high-strength, flame-retardant and recyclable polyurethane elastomers based on dynamic borate acid esters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1