Yanling Hu, Fangfang Wang, Hui Ye, Jingai Jiang, Shengke Li, Baoying Dai, Jiahui Li, Jun Yang, Xuejiao Song, Junjie Zhang, Yannan Xie, Li Gao, Dongliang Yang
{"title":"MXene-based flexible electronic materials for wound infection detection and treatment","authors":"Yanling Hu, Fangfang Wang, Hui Ye, Jingai Jiang, Shengke Li, Baoying Dai, Jiahui Li, Jun Yang, Xuejiao Song, Junjie Zhang, Yannan Xie, Li Gao, Dongliang Yang","doi":"10.1038/s41528-024-00312-4","DOIUrl":null,"url":null,"abstract":"Wound infection is a worldwide health issue that not only brings large detrimental effects to people’s physical and mental health, but also causes substantial economic burdens to society. By using traditional surgical debridement and antibiotic therapy, patients generally suffer more pain and are at risk of recurring infections. Thus, the development of non-antibiotic treatment methods is desperately needed. Currently, the emerging of flexible wound dressings with physiological signal detection, inactivated infectious pathogen, and wound-healing promoting properties has exhibited immense potential for the treatment of infected wound. Among various dressings, MXene‐based flexible electronic materials as wound dressings with special electroactive, mechanical, photophysical, and biological performances possess a broad application prospect in healthcare. In this review, the challenges of infected wound management are introduced. Next, the types of MXene-based flexible materials and wound infection features are outlined. Then the recent advance of MXene-based flexible materials for infected wound detection and treatment is summarized. Lastly, the predicaments, prospects, and future directions of MXene-based flexible materials for infected wound management are discussed.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00312-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00312-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wound infection is a worldwide health issue that not only brings large detrimental effects to people’s physical and mental health, but also causes substantial economic burdens to society. By using traditional surgical debridement and antibiotic therapy, patients generally suffer more pain and are at risk of recurring infections. Thus, the development of non-antibiotic treatment methods is desperately needed. Currently, the emerging of flexible wound dressings with physiological signal detection, inactivated infectious pathogen, and wound-healing promoting properties has exhibited immense potential for the treatment of infected wound. Among various dressings, MXene‐based flexible electronic materials as wound dressings with special electroactive, mechanical, photophysical, and biological performances possess a broad application prospect in healthcare. In this review, the challenges of infected wound management are introduced. Next, the types of MXene-based flexible materials and wound infection features are outlined. Then the recent advance of MXene-based flexible materials for infected wound detection and treatment is summarized. Lastly, the predicaments, prospects, and future directions of MXene-based flexible materials for infected wound management are discussed.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.