Sujata T. Timmanaikar, Sakander Hayat, Sunilkumar M. Hosamani, Shabana Banu
{"title":"Structure–property modeling of coumarins and coumarin-related compounds in pharmacotherapy of cancer by employing graphical topological indices","authors":"Sujata T. Timmanaikar, Sakander Hayat, Sunilkumar M. Hosamani, Shabana Banu","doi":"10.1140/epje/s10189-024-00427-6","DOIUrl":null,"url":null,"abstract":"<p>Coumarins, a subgroup of colorless and crystalline oxygenated heterocyclic compounds originally discovered in the plant Dipteryx odorata, were the subject of a recent study investigating their quantitative structure–activity relationship (QSAR) in cancer pharmacotherapy. This study utilized graph theoretical molecular descriptors, also known as topological indices, as a numerical representation method for the chemical structures embedded in molecular graphs. These descriptors, derived from molecular graphs, play a pivotal role in quantitative structure–property relationship (QSPR) analysis. In this paper, intercorrelation between the Balban index, connective eccentric index, eccentricity connectivity index, harmonic index, hyper Zagreb index, first path Zagreb index, second path Zagreb index, Randic index, sum connectivity index, graph energy and Laplacian energy is studied on the set of molecular graphs of coumarins. It is found that the pairs of degree-based indices are highly intercorrelated. The use of these molecular descriptors in structure–boiling point modeling was analyzed. Finally, the curve-linear regression between considered molecular descriptors with physicochemical properties of coumarins and coumarin-related compounds is obtained.\n</p><p>Some of the coumarin-related anti-cancer compounds considered in this study </p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00427-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coumarins, a subgroup of colorless and crystalline oxygenated heterocyclic compounds originally discovered in the plant Dipteryx odorata, were the subject of a recent study investigating their quantitative structure–activity relationship (QSAR) in cancer pharmacotherapy. This study utilized graph theoretical molecular descriptors, also known as topological indices, as a numerical representation method for the chemical structures embedded in molecular graphs. These descriptors, derived from molecular graphs, play a pivotal role in quantitative structure–property relationship (QSPR) analysis. In this paper, intercorrelation between the Balban index, connective eccentric index, eccentricity connectivity index, harmonic index, hyper Zagreb index, first path Zagreb index, second path Zagreb index, Randic index, sum connectivity index, graph energy and Laplacian energy is studied on the set of molecular graphs of coumarins. It is found that the pairs of degree-based indices are highly intercorrelated. The use of these molecular descriptors in structure–boiling point modeling was analyzed. Finally, the curve-linear regression between considered molecular descriptors with physicochemical properties of coumarins and coumarin-related compounds is obtained.
Some of the coumarin-related anti-cancer compounds considered in this study
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.