{"title":"Tumor microenvironment of ameloblastoma with a focus on osteoclastogenesis, cell migration, and malignant transformation","authors":"Shohei Yoshimoto , Kazuhiko Okamura","doi":"10.1016/j.job.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Odontogenic tumors arise in the jawbone and originate from cells associated with tooth development. Therefore, understanding odontogenic tumors requires knowledge of all aspects of dental research, including tooth development and eruption. Ameloblastoma is the most common odontogenic tumor.</p></div><div><h3>Highlight</h3><p>Although a benign tumor, ameloblastoma progresses with marked jawbone resorption. Because of its locally aggressive features, it can be treated surgically by resecting the surrounding bone. From a molecular pathology perspective, several genetic mutations and dysregulated signaling pathways involved in ameloblastoma tumorigenesis have been identified. Histopathologically, ameloblastomas consist of peripheral ameloblast-like cells and an inner stellate reticulum. The stromal region consists of fibrovascular connective tissue, showing a characteristic sparse myxoid histology. In general, the tumor microenvironment, including the surrounding non-tumor cells, contributes to tumorigenesis and progression. In this review, we focus on the tumor microenvironment of ameloblastomas. In addition, we present some of our recent studies on osteoclastogenesis, tubulin acetylation-induced cell migration, and hypoxia-induced epithelial–mesenchymal transition in ameloblastomas.</p></div><div><h3>Conclusion</h3><p>Further research on ameloblastomas can lead to the development of new treatments and improve patients’ quality of life.</p></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"66 2","pages":"Pages 314-319"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007924000859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Odontogenic tumors arise in the jawbone and originate from cells associated with tooth development. Therefore, understanding odontogenic tumors requires knowledge of all aspects of dental research, including tooth development and eruption. Ameloblastoma is the most common odontogenic tumor.
Highlight
Although a benign tumor, ameloblastoma progresses with marked jawbone resorption. Because of its locally aggressive features, it can be treated surgically by resecting the surrounding bone. From a molecular pathology perspective, several genetic mutations and dysregulated signaling pathways involved in ameloblastoma tumorigenesis have been identified. Histopathologically, ameloblastomas consist of peripheral ameloblast-like cells and an inner stellate reticulum. The stromal region consists of fibrovascular connective tissue, showing a characteristic sparse myxoid histology. In general, the tumor microenvironment, including the surrounding non-tumor cells, contributes to tumorigenesis and progression. In this review, we focus on the tumor microenvironment of ameloblastomas. In addition, we present some of our recent studies on osteoclastogenesis, tubulin acetylation-induced cell migration, and hypoxia-induced epithelial–mesenchymal transition in ameloblastomas.
Conclusion
Further research on ameloblastomas can lead to the development of new treatments and improve patients’ quality of life.