Highly stretchable alginate/methylcellulose hydrogels for 3D bio-printing: photopolymerization approach enhancing structural integrity

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY GIANT Pub Date : 2024-05-07 DOI:10.1016/j.giant.2024.100280
Sorour Sadeghzade , Jinrui Cao , Rui Yang , Yuanlong Li , Yanping Li , Dingcong Zhang , Jingyi Liu , Ziyue Yu , Liang Fang , Hongyan Yuan
{"title":"Highly stretchable alginate/methylcellulose hydrogels for 3D bio-printing: photopolymerization approach enhancing structural integrity","authors":"Sorour Sadeghzade ,&nbsp;Jinrui Cao ,&nbsp;Rui Yang ,&nbsp;Yuanlong Li ,&nbsp;Yanping Li ,&nbsp;Dingcong Zhang ,&nbsp;Jingyi Liu ,&nbsp;Ziyue Yu ,&nbsp;Liang Fang ,&nbsp;Hongyan Yuan","doi":"10.1016/j.giant.2024.100280","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, 3D hydrogels based on alginate (Alg) have undergone substantial advancements, holding transformative potential for biomedicine and regenerative medicine. Nevertheless, the viscosity of Alg needs to be further increased, in order to print complex 3D structures. Attempts to adjust printability often employ rheological modifiers like methylcellulose (MC), but these still lack mechanical integrity for broader biomedical applications. Our study sought to chemically modify Alg/MC to create a photopolymerizable hydrogel by incorporating acrylate-based monomers, which would enhance the curing ability of the base hydrogel, leading to better mechanical properties of Alg/MC, such as stretchability and stability with shape recovery. Comprehensive mechanical assessments unveiled remarkable tensile properties, achieving a notable specific strength benchmark of 44.72 kPa/(g.cm<sup>-3</sup>) before reaching the point of fracture. This represents a substantial 250 % improvement compared to samples lacking the acrylate monomer. Biomedical assessments confirmed the hydrogel's promising potential, especially with the MG-63 cell line, underscoring its suitability for advanced applications like tissue engineering.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100280"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000456/pdfft?md5=949c89bfeaa228f9583155f05daaa8ab&pid=1-s2.0-S2666542524000456-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000456","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, 3D hydrogels based on alginate (Alg) have undergone substantial advancements, holding transformative potential for biomedicine and regenerative medicine. Nevertheless, the viscosity of Alg needs to be further increased, in order to print complex 3D structures. Attempts to adjust printability often employ rheological modifiers like methylcellulose (MC), but these still lack mechanical integrity for broader biomedical applications. Our study sought to chemically modify Alg/MC to create a photopolymerizable hydrogel by incorporating acrylate-based monomers, which would enhance the curing ability of the base hydrogel, leading to better mechanical properties of Alg/MC, such as stretchability and stability with shape recovery. Comprehensive mechanical assessments unveiled remarkable tensile properties, achieving a notable specific strength benchmark of 44.72 kPa/(g.cm-3) before reaching the point of fracture. This represents a substantial 250 % improvement compared to samples lacking the acrylate monomer. Biomedical assessments confirmed the hydrogel's promising potential, especially with the MG-63 cell line, underscoring its suitability for advanced applications like tissue engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于三维生物打印的高伸展性藻酸盐/甲基纤维素水凝胶:增强结构完整性的光聚合方法
近年来,基于藻酸盐(Alg)的三维水凝胶取得了长足的进步,为生物医学和再生医学带来了变革潜力。然而,为了打印复杂的三维结构,藻酸盐的粘度需要进一步提高。调整打印性能的尝试通常采用甲基纤维素(MC)等流变改性剂,但对于更广泛的生物医学应用而言,这些改性剂仍然缺乏机械完整性。我们的研究试图对 Alg/MC 进行化学改性,通过加入丙烯酸酯类单体来创建一种可光聚合的水凝胶,这将增强基础水凝胶的固化能力,从而提高 Alg/MC 的机械性能,如拉伸性和形状恢复稳定性。全面的机械评估揭示了其卓越的拉伸性能,在达到断裂点之前,比强度基准达到了 44.72 kPa/(g.cm-3)。与不含丙烯酸酯单体的样品相比,该性能大幅提高了 250%。生物医学评估证实了这种水凝胶的巨大潜力,尤其是在 MG-63 细胞系中的应用,突出了它在组织工程等高级应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
期刊最新文献
Influence of activation/deactivation process on surface-initiated atom transfer radical polymerization: An in silico investigation Homochiral “8″-shaped nanotoroids assembled from polypeptides Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels The effect of dynamic cross-links and mesogenic groups on the swelling and collapse of polymer gels Binary blends of poly(lactic acid) and poly(methyl methacrylate) for high energy density and charge/discharge efficiency capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1