Helically deployed Au nanoparticles using block copolymer templates as chiral plasmonic monoliths

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY GIANT Pub Date : 2025-02-01 DOI:10.1016/j.giant.2024.100350
Hsiu-Wen Tsai , Sheng-Wei Shao , Po-Ting Chiu , Cheng-Yen Chang , Yu-Chuan Sung , Guan-Hong Li , Yi-Ching Chen , Akemi Kumagai , Hiroshi Jinnai , Yu-Chueh Hung , Jing-Cherng Tsai , Rong-Ming Ho
{"title":"Helically deployed Au nanoparticles using block copolymer templates as chiral plasmonic monoliths","authors":"Hsiu-Wen Tsai ,&nbsp;Sheng-Wei Shao ,&nbsp;Po-Ting Chiu ,&nbsp;Cheng-Yen Chang ,&nbsp;Yu-Chuan Sung ,&nbsp;Guan-Hong Li ,&nbsp;Yi-Ching Chen ,&nbsp;Akemi Kumagai ,&nbsp;Hiroshi Jinnai ,&nbsp;Yu-Chueh Hung ,&nbsp;Jing-Cherng Tsai ,&nbsp;Rong-Ming Ho","doi":"10.1016/j.giant.2024.100350","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to fabricate polymeric thin films with helically deployed gold (Au) nanoparticles by using self-assembled chiral block copolymers (BCPs*) with controlled helicity as templates, giving polymeric monolith with unique optical properties as chiral plasmonic thin film. Enantiomeric polylactide-based BCPs*, polystyrene-block-poly(<em>L</em>-lactide) (PS-<em>b</em>-PLLA) and poly-styrene-block-poly(<em>D</em>-lactide) (PS-<em>b</em>-PDLA) with disulfide junction are designed and synthesized, denoted as PS-ss-PLLA and PS-ss-PDLA, respectively. The helically deployed chemical junctions of the PS-ss-PLLA and PS-ss-PDLA thin films from the self-assembly of helix-forming BCPs* can give thiol end groups preferentially arranged in a one-handed helical fashion at the inner wall of nanoporous PS after hydrolysis of polylactide followed by reducing the disulfide into thiol. Au nanoparticles (Au NPs) with a size of 2-5 nm, resulting from reduction, can associate with the thiol end groups in the nanoporous PS, forming a helical disposition of Au NPs with specific handedness. As a result, circular dichroism (CD) signals of localized surface plasmonic resonance (LSPR) originating from the helical Au NP arrays with preferred chirality can be acquired from the polymeric monolith fabricated, giving appealing applications as chiroptical devices.</div></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"21 ","pages":"Article 100350"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524001140","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to fabricate polymeric thin films with helically deployed gold (Au) nanoparticles by using self-assembled chiral block copolymers (BCPs*) with controlled helicity as templates, giving polymeric monolith with unique optical properties as chiral plasmonic thin film. Enantiomeric polylactide-based BCPs*, polystyrene-block-poly(L-lactide) (PS-b-PLLA) and poly-styrene-block-poly(D-lactide) (PS-b-PDLA) with disulfide junction are designed and synthesized, denoted as PS-ss-PLLA and PS-ss-PDLA, respectively. The helically deployed chemical junctions of the PS-ss-PLLA and PS-ss-PDLA thin films from the self-assembly of helix-forming BCPs* can give thiol end groups preferentially arranged in a one-handed helical fashion at the inner wall of nanoporous PS after hydrolysis of polylactide followed by reducing the disulfide into thiol. Au nanoparticles (Au NPs) with a size of 2-5 nm, resulting from reduction, can associate with the thiol end groups in the nanoporous PS, forming a helical disposition of Au NPs with specific handedness. As a result, circular dichroism (CD) signals of localized surface plasmonic resonance (LSPR) originating from the helical Au NP arrays with preferred chirality can be acquired from the polymeric monolith fabricated, giving appealing applications as chiroptical devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
期刊最新文献
Intrinsic low-dielectric Cardo polyimide with high heat resistance, high transparency, and low birefringence Helically deployed Au nanoparticles using block copolymer templates as chiral plasmonic monoliths Thermosensitive ferulic acid-modified chitosan gel coatings loaded with selenium nanoparticles for enhanced grape foliar rainfastness and selenium uptake Ions in motion: From biological channels to engineered transport systems “Clicking” Amphiphilic Block Copolymers onto POSS Core: A General Approach for “Star-like” Polymers with Different Symmetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1