Indirect effects of plasma-activated water irrigation on Tetranychus urticae populations

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-05-12 DOI:10.1007/s10340-024-01791-0
Patrice Jacob Savi, Anil Mantri, Haleh Khodaverdi, Yugeng Zou, Gilberto José de Moraes, Christian Nansen
{"title":"Indirect effects of plasma-activated water irrigation on Tetranychus urticae populations","authors":"Patrice Jacob Savi, Anil Mantri, Haleh Khodaverdi, Yugeng Zou, Gilberto José de Moraes, Christian Nansen","doi":"10.1007/s10340-024-01791-0","DOIUrl":null,"url":null,"abstract":"<p>Plasma-activated water (PAW) is receiving increased attention as a booster of seed germination and seedling vigor, and some studies have described use of PAW to manage crop pathogens. Here, we examined physicochemical properties of two PAWs (referred to as PAW 6.0 and 9.4 min with atmospheric plasma jet) and assessed “their indirect effects” (applied as supplementary irrigation) on host suitability of tomato plants (<i>Solanum lycopersicum</i> L.) to two-spotted spider mites (<i>Tetranychus urticae</i> Koch). Exposure of water to cold plasma significantly lowered pH and increased concentrations of H<sub>2</sub>O<sub>2,</sub> NO<sub>2</sub><sup>−</sup>, and NO<sub>3</sub><sup>−</sup>. Supplementary PAW irrigations elicited significant increases in leaf composition of several elements (N, P, K S, Ca, and Mg), leaf reflectance, plant size, and trichome densities (except non-glandular trichomes on the adaxial surface). Preference bioassays revealed significant avoidance of settling and reduced oviposition by two-spotted spider mites on leaf discs from PAW-irrigated plants compared to those from untreated control plants. Performance bioassays showed a significant decrease in two-spotted spider mite populations on PAW-irrigated plants. Results presented in this study provide comprehensive support to the hypothesis that indirect effects of supplementary PAW irrigation significantly reduce host plant suitability to two-spotted spider mites. PAW 6.0 may be slightly better than PAW 9.4, and this difference in performance is discussed in this study. Applications of PAW as supplementary irrigation are likely highly compatible with other IPM tactics and should be considered an innovative and sustainable component in twenty-first-century pest management.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"2014 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01791-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma-activated water (PAW) is receiving increased attention as a booster of seed germination and seedling vigor, and some studies have described use of PAW to manage crop pathogens. Here, we examined physicochemical properties of two PAWs (referred to as PAW 6.0 and 9.4 min with atmospheric plasma jet) and assessed “their indirect effects” (applied as supplementary irrigation) on host suitability of tomato plants (Solanum lycopersicum L.) to two-spotted spider mites (Tetranychus urticae Koch). Exposure of water to cold plasma significantly lowered pH and increased concentrations of H2O2, NO2, and NO3. Supplementary PAW irrigations elicited significant increases in leaf composition of several elements (N, P, K S, Ca, and Mg), leaf reflectance, plant size, and trichome densities (except non-glandular trichomes on the adaxial surface). Preference bioassays revealed significant avoidance of settling and reduced oviposition by two-spotted spider mites on leaf discs from PAW-irrigated plants compared to those from untreated control plants. Performance bioassays showed a significant decrease in two-spotted spider mite populations on PAW-irrigated plants. Results presented in this study provide comprehensive support to the hypothesis that indirect effects of supplementary PAW irrigation significantly reduce host plant suitability to two-spotted spider mites. PAW 6.0 may be slightly better than PAW 9.4, and this difference in performance is discussed in this study. Applications of PAW as supplementary irrigation are likely highly compatible with other IPM tactics and should be considered an innovative and sustainable component in twenty-first-century pest management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体活化水灌溉对荨麻四螨(Tetranychus urticae)种群的间接影响
等离子体活化水(PAW)作为种子萌发和秧苗活力的促进剂正受到越来越多的关注,一些研究也描述了等离子体活化水在管理作物病原体方面的应用。在此,我们研究了两种活化水(分别称为 6.0 和 9.4 分钟大气等离子喷射活化水)的理化特性,并评估了它们(作为补充灌溉)对番茄植物(Solanum lycopersicum L.)寄主对二斑蜘蛛螨(Tetranychus urticae Koch)的适应性的 "间接影响"。水暴露于冷血浆中会显著降低 pH 值,增加 H2O2、NO2- 和 NO3-的浓度。补充 PAW 灌溉能显著增加叶片中几种元素的组成(氮、磷、钾、钙和镁)、叶片反射率、植株大小和毛状体密度(正面的非腺体毛状体除外)。偏好生物测定显示,与未处理的对照植物的叶盘相比,二斑蜘蛛螨在 PAW 灌溉植物的叶盘上明显避免沉降并减少产卵。性能生物测定显示,PAW 灌溉植物上的二斑蜘蛛螨数量明显减少。本研究的结果全面支持了以下假设:PAW 补充灌溉的间接效果会显著降低寄主植物对二斑蛛螨的适应性。PAW 6.0 可能略优于 PAW 9.4,本研究对这种性能差异进行了讨论。施用 PAW 作为补充灌溉可能与其他虫害综合防治策略高度兼容,应被视为 21 世纪虫害管理的创新和可持续组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Assessment of drive efficiency and resistance allele formation of a homing gene drive in the mosquito Aedes aegypti Exclusion of ants conditions the efficiency of an attract and reward strategy against Dysaphis plantaginea in apple orchards From a stored-product pest to a promising protein source: a U-turn of human perspective for the yellow mealworm Tenebrio molitor Biological control of pests of stored cereals with the predatory mites Blattisocius tarsalis and Cheyletus malaccensis Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1