{"title":"CCSfind: A tool for chemically informed LC-IM-MS database building","authors":"Sangeeta Kumari, Tim Causon","doi":"10.1002/jms.5040","DOIUrl":null,"url":null,"abstract":"<p>In addition to providing critical knowledge of the accurate mass of ions, ion mobility-mass spectrometry (IM-MS) delivers complementary data relating to the conformation and size of ions in the form of an ion mobility spectrum and derived parameters, namely, the ion's mobility (<i>K</i>) and the IM-derived collision cross section (<i>CCS</i>). However, the maximum amount of information obtained in IM-MS measurements is not currently transferred into analytical databases including the full mobility spectra (<i>CCS</i> distributions) as well as capturing of additional ion species (e.g., adducts) into the same compound entry. We introduce CCSfind, a new tool for building comprehensive databases from experimental IM-MS measurements of small molecules. CCSfind allows predicted ion species to be chosen for input chemical formulae, which are then targeted by CCSfind after parsing open source mzML input files to provide a unified set of results within a single data processing step. CCSfind can handle both chromatographically separated isomers and IM separation of isomeric ions (e.g., “protomers” or conformers of the same ion species) with simple user control over the output for new database entries in SQL format. Files of up to 1 GB can be processed in less than 2 min on a desktop computer with 32 GB RAM with computational time scaling linearly with the size of the input mzML file or the number of input molecular formulae. Results are manually reviewed, annotated with experimental settings, before committing the database where the full dataset can be retrieved.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5040","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In addition to providing critical knowledge of the accurate mass of ions, ion mobility-mass spectrometry (IM-MS) delivers complementary data relating to the conformation and size of ions in the form of an ion mobility spectrum and derived parameters, namely, the ion's mobility (K) and the IM-derived collision cross section (CCS). However, the maximum amount of information obtained in IM-MS measurements is not currently transferred into analytical databases including the full mobility spectra (CCS distributions) as well as capturing of additional ion species (e.g., adducts) into the same compound entry. We introduce CCSfind, a new tool for building comprehensive databases from experimental IM-MS measurements of small molecules. CCSfind allows predicted ion species to be chosen for input chemical formulae, which are then targeted by CCSfind after parsing open source mzML input files to provide a unified set of results within a single data processing step. CCSfind can handle both chromatographically separated isomers and IM separation of isomeric ions (e.g., “protomers” or conformers of the same ion species) with simple user control over the output for new database entries in SQL format. Files of up to 1 GB can be processed in less than 2 min on a desktop computer with 32 GB RAM with computational time scaling linearly with the size of the input mzML file or the number of input molecular formulae. Results are manually reviewed, annotated with experimental settings, before committing the database where the full dataset can be retrieved.
期刊介绍:
The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions.
The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.