{"title":"Quantitative analysis of therapeutic peptides by CZE using multiple sample injection in hydrodynamically closed separation system.","authors":"Ondrej Stefanik, Peter Mikus, Juraj Piestansky","doi":"10.1002/elps.202400039","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic peptides have emerged as an innovative and promising class of therapeutic compounds in modern medicine. Synthetic peptide analogs triptorelin and lanreotide are known for their pronounced clinical versatility and potency. In this study, we present the development and validation of novel methods based on capillary zone electrophoresis performed in hydrodynamically closed system (HCS) and paired with ultraviolet detection and repeated injection sample introduction. To the best of our knowledge, we developed the first capillary electrophoresis-based method for the determination of lanreotide, and concurrently, the first HCS method for the determination of triptorelin. Maximal separation efficiency and signal intensity were achieved using background electrolytes composed of 50 mM formic acid with the addition of 0.05% (v/v) methyl-hydroxyethyl cellulose. The proposed methods exhibit favorable performance characteristics, namely, calibration curve (r<sup>2</sup> exceeding 0.99), low limits of detection (0.25 µg/mL in a water matrix and 0.5 µg/mL in synthetic urine), acceptable precision (relative standard deviation ranging from 2.2% to 9.6% for intraday repeatability and between 5.2% and 14.9% for interday reproducibility), and accuracy (relative errors falling within the 91.1%-107.8% range). The method for triptorelin determination was then used for its quantification in a commercially available drug dosage form (powder for injection) and in spiked synthetic urine samples. The developed methods were also evaluated according to the novel blue applicability grade index, revealing their superior applicability. The results collectively point out the potential of the proposed methods for both quality control and clinical investigations.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic peptides have emerged as an innovative and promising class of therapeutic compounds in modern medicine. Synthetic peptide analogs triptorelin and lanreotide are known for their pronounced clinical versatility and potency. In this study, we present the development and validation of novel methods based on capillary zone electrophoresis performed in hydrodynamically closed system (HCS) and paired with ultraviolet detection and repeated injection sample introduction. To the best of our knowledge, we developed the first capillary electrophoresis-based method for the determination of lanreotide, and concurrently, the first HCS method for the determination of triptorelin. Maximal separation efficiency and signal intensity were achieved using background electrolytes composed of 50 mM formic acid with the addition of 0.05% (v/v) methyl-hydroxyethyl cellulose. The proposed methods exhibit favorable performance characteristics, namely, calibration curve (r2 exceeding 0.99), low limits of detection (0.25 µg/mL in a water matrix and 0.5 µg/mL in synthetic urine), acceptable precision (relative standard deviation ranging from 2.2% to 9.6% for intraday repeatability and between 5.2% and 14.9% for interday reproducibility), and accuracy (relative errors falling within the 91.1%-107.8% range). The method for triptorelin determination was then used for its quantification in a commercially available drug dosage form (powder for injection) and in spiked synthetic urine samples. The developed methods were also evaluated according to the novel blue applicability grade index, revealing their superior applicability. The results collectively point out the potential of the proposed methods for both quality control and clinical investigations.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.