The Protective Effects of Taurine, a Non-essential Amino Acid, Against Metals Toxicities: A Review Article.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biological Trace Element Research Pub Date : 2025-02-01 Epub Date: 2024-05-13 DOI:10.1007/s12011-024-04191-8
Karim Naraki, Majid Keshavarzi, Bibi Marjan Razavi, Hossein Hosseinzadeh
{"title":"The Protective Effects of Taurine, a Non-essential Amino Acid, Against Metals Toxicities: A Review Article.","authors":"Karim Naraki, Majid Keshavarzi, Bibi Marjan Razavi, Hossein Hosseinzadeh","doi":"10.1007/s12011-024-04191-8","DOIUrl":null,"url":null,"abstract":"<p><p>Taurine is a non-proteinogenic amino acid derived from cysteine. It is involved in several phenomena such as the regulation of growth and differentiation, osmoregulation, neurohormonal modulation, and lipid metabolism. Taurine is important because of its high levels in several tissues such as the central nervous system (CNS), heart, skeletal muscles, retinal membranes, and platelets. In this report, we present the functional properties of taurine indicating that it has potential effects on various metal toxicities. Therefore, a comprehensive literature review was performed using the Scopus, PubMed, and Web of Science databases. According to the search keywords, 61 articles were included in the study. The results indicate that taurine protects tissues against metal toxicity through enhancement of enzymatic and non-enzymatic antioxidant capacity, modulation of oxidative stress, anti-inflammatory and anti-apoptotic effects, involvement in different molecular pathways, and interference with the activity of various enzymes. Taken together, taurine is a natural supplement that presents antitoxic effects against many types of compounds, especially metals, suggesting public consumption of this amino acid as a prophylactic agent against the incidence of metal toxicity.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"872-890"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04191-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Taurine is a non-proteinogenic amino acid derived from cysteine. It is involved in several phenomena such as the regulation of growth and differentiation, osmoregulation, neurohormonal modulation, and lipid metabolism. Taurine is important because of its high levels in several tissues such as the central nervous system (CNS), heart, skeletal muscles, retinal membranes, and platelets. In this report, we present the functional properties of taurine indicating that it has potential effects on various metal toxicities. Therefore, a comprehensive literature review was performed using the Scopus, PubMed, and Web of Science databases. According to the search keywords, 61 articles were included in the study. The results indicate that taurine protects tissues against metal toxicity through enhancement of enzymatic and non-enzymatic antioxidant capacity, modulation of oxidative stress, anti-inflammatory and anti-apoptotic effects, involvement in different molecular pathways, and interference with the activity of various enzymes. Taken together, taurine is a natural supplement that presents antitoxic effects against many types of compounds, especially metals, suggesting public consumption of this amino acid as a prophylactic agent against the incidence of metal toxicity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牛磺酸(一种非必需氨基酸)对金属毒性的保护作用:综述文章。
牛磺酸是一种非蛋白源氨基酸,由半胱氨酸衍生而来。它参与多种现象,如调节生长和分化、渗透调节、神经激素调节和脂质代谢。牛磺酸之所以重要,是因为它在中枢神经系统(CNS)、心脏、骨骼肌、视网膜和血小板等多种组织中含量较高。在本报告中,我们介绍了牛磺酸的功能特性,表明它对各种金属毒性具有潜在的影响。因此,我们使用 Scopus、PubMed 和 Web of Science 数据库进行了全面的文献综述。根据搜索关键词,研究共收录了 61 篇文章。结果表明,牛磺酸可通过增强酶和非酶抗氧化能力、调节氧化应激、抗炎和抗凋亡作用、参与不同的分子途径以及干扰各种酶的活性来保护组织免受金属毒性的伤害。综上所述,牛磺酸是一种天然补充剂,对多种类型的化合物,尤其是金属具有抗毒作用,建议公众食用这种氨基酸作为预防金属中毒的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
期刊最新文献
Integrated In-silico and In-vivo Assessments of Betaine's Effect on the Hypothalamic-Pituitary-Testicular (HPT) Axis in Fluoride-Treated Rats. Investigation of the Effects of Selenium Against 4-Nonylphenol-induced Toxicity in Rat Testis. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Trace Element Chromium-D-Phenylalanine Complex: Anti-Inflammatory and Antioxidant Insights from In Vivo and In Silico Studies. Correction: Impact of Trace Mineral Source and Phytase Supplementation on Prececal Phytate Degradation and Mineral Digestibility, Bone Mineralization, and Tissue Gene Expression in Broiler Chickens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1