Dan Qiao, Shuyu Cheng, Shiyuan Song, Wen Zhang, Bin Chen, Fuhua Yan, Yangheng Zhang
{"title":"Polarized M2 macrophages induced by glycosylated nano-hydroxyapatites activate bone regeneration in periodontitis therapy","authors":"Dan Qiao, Shuyu Cheng, Shiyuan Song, Wen Zhang, Bin Chen, Fuhua Yan, Yangheng Zhang","doi":"10.1111/jcpe.13999","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>To investigate the association between periodontal macrophage polarization states and the alveolar bone levels, and to assess whether glycosylated nano-hydroxyapatites (GHANPs) could improve bone regeneration in periodontitis by inducing macrophage M2 polarization.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>The change of macrophage polarization state in inflammatory periodontal tissues (with bone loss) was examined using clinical gingival samples. The relationship between macrophage phenotype and bone level in periodontal bone loss and repair was evaluated using a mouse periodontitis model. The effect of GHANPs on macrophage polarization was assessed by the in vitro model of lipopolysaccharide (LPS)-stimulated inflammation. The polarization-related markers were detected by immunofluorescence staining, real-time polymerase chain reaction and enzyme-linked immunosorbent assay analysis. The therapeutic effect of GHANPs on alveolar bone loss was explored in experimental periodontitis by histological staining and micro-CT analysis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A lower macrophage M2/M1 ratio was observed in periodontitis-affected human gingival tissues. The results of animal experiments demonstrated a positive correlation between a lower Arg-1/iNOS ratio and accelerated alveolar bone loss; also, the proportion of Arg-1-positive macrophages increased during bone repair and regeneration. The administration of GHANPs partially restored M2 macrophage polarization after LPS stimulation. GHANPs increased alveolar bone repair and regeneration in experimental periodontitis induced by ligation, potentially related to their macrophage M2 transition regulation.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The findings of this study indicate that the induction of macrophage M2 polarization can be considered a viable approach for enhancing inflammatory bone repair. Additionally, GHANPs show potential in the clinical treatment of periodontitis.</p>\n </section>\n </div>","PeriodicalId":15380,"journal":{"name":"Journal of Clinical Periodontology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Periodontology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcpe.13999","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
To investigate the association between periodontal macrophage polarization states and the alveolar bone levels, and to assess whether glycosylated nano-hydroxyapatites (GHANPs) could improve bone regeneration in periodontitis by inducing macrophage M2 polarization.
Materials and Methods
The change of macrophage polarization state in inflammatory periodontal tissues (with bone loss) was examined using clinical gingival samples. The relationship between macrophage phenotype and bone level in periodontal bone loss and repair was evaluated using a mouse periodontitis model. The effect of GHANPs on macrophage polarization was assessed by the in vitro model of lipopolysaccharide (LPS)-stimulated inflammation. The polarization-related markers were detected by immunofluorescence staining, real-time polymerase chain reaction and enzyme-linked immunosorbent assay analysis. The therapeutic effect of GHANPs on alveolar bone loss was explored in experimental periodontitis by histological staining and micro-CT analysis.
Results
A lower macrophage M2/M1 ratio was observed in periodontitis-affected human gingival tissues. The results of animal experiments demonstrated a positive correlation between a lower Arg-1/iNOS ratio and accelerated alveolar bone loss; also, the proportion of Arg-1-positive macrophages increased during bone repair and regeneration. The administration of GHANPs partially restored M2 macrophage polarization after LPS stimulation. GHANPs increased alveolar bone repair and regeneration in experimental periodontitis induced by ligation, potentially related to their macrophage M2 transition regulation.
Conclusions
The findings of this study indicate that the induction of macrophage M2 polarization can be considered a viable approach for enhancing inflammatory bone repair. Additionally, GHANPs show potential in the clinical treatment of periodontitis.
期刊介绍:
Journal of Clinical Periodontology was founded by the British, Dutch, French, German, Scandinavian, and Swiss Societies of Periodontology.
The aim of the Journal of Clinical Periodontology is to provide the platform for exchange of scientific and clinical progress in the field of Periodontology and allied disciplines, and to do so at the highest possible level. The Journal also aims to facilitate the application of new scientific knowledge to the daily practice of the concerned disciplines and addresses both practicing clinicians and academics. The Journal is the official publication of the European Federation of Periodontology but wishes to retain its international scope.
The Journal publishes original contributions of high scientific merit in the fields of periodontology and implant dentistry. Its scope encompasses the physiology and pathology of the periodontium, the tissue integration of dental implants, the biology and the modulation of periodontal and alveolar bone healing and regeneration, diagnosis, epidemiology, prevention and therapy of periodontal disease, the clinical aspects of tooth replacement with dental implants, and the comprehensive rehabilitation of the periodontal patient. Review articles by experts on new developments in basic and applied periodontal science and associated dental disciplines, advances in periodontal or implant techniques and procedures, and case reports which illustrate important new information are also welcome.