Abundance and diversity of methicillin-resistant bacteria from bathroom surfaces at workplaces using CHROMagar media, 16S, and dnaJ gene sequence typing.
{"title":"Abundance and diversity of methicillin-resistant bacteria from bathroom surfaces at workplaces using CHROMagar media, 16S, and dnaJ gene sequence typing.","authors":"Harshul Singh, Bryan Gibb, Reta Abdi","doi":"10.62347/EJQK3362","DOIUrl":null,"url":null,"abstract":"<p><p>University campus communities consist of dynamic and diverse human populations originated from different regions of the country or the world. Their national/global movement to and from campus may contribute to the spread and buildup of methicillin-resistant (MR) bacteria, including MR <i>Staphylococci</i> (MRS) on high-touch surfaces, sinks, and toilets. However, studies on MR bacteria contamination of surfaces, sinks, and toilets are scarce in workplaces outside of healthcare settings. Hence, little is known whether university communities contaminate campus bathrooms by MR bacteria. This study evaluated the abundance, identity, and phylogenetics of MR bacteria grown on CHROMagar MRSA media from bathrooms at workplaces. We collected 21 sink and 21 toilet swab samples from 10 buildings on campus and cultured them on CHROMagar MRSA media, extracted DNA from MR bacteria colonies, sequenced PCR products of 16S and dnaJ primers, determined the sequence identities by BLAST search, and constructed a phylogenetic tree. Of 42 samples, 57.1% (24/42) harbored MR bacteria. MR bacteria were more prevalent on the sink (61.9%) than in the toilet (52.2%) and in male bathrooms (54.2%) than in female bathrooms (41.7%). The colony count on the bathroom surfaces of 42 samples varied in that 42.9% (18/42), 33.3, 14.3, and 9.5% of samples harbored 0, 100, and > 1000 MR bacteria colonies, respectively. Of MR bacteria sequenced, BLAST search and phylogenetic analysis showed that <i>Staphylococcus</i> accounted for 60% of the MR bacteria and the rest were non-<i>Staphylococci</i>. Of <i>Staphylococcus</i> carrying MR (n = 15), 53.3% were <i>S. hemolyticus</i> followed by <i>S. lugdunensis</i> (26.7%), <i>S. epidermidis</i> (8%), and a newly discovered <i>S. borealis</i> in 2020 (4%). Of non-<i>Staphylococci</i> MR bacteria, 20% accounted for <i>Sphingomonas koreensis</i>. Campus bathrooms serve as a reservoir for diverse bacteria carrying MR, which pose a direct risk of infection and a potential source of horizontal gene transfer. To reduce the health risk posed by MR bacteria in high traffic areas such as bathrooms additional environmental monitoring and improved decontamination practices are needed.</p>","PeriodicalId":73460,"journal":{"name":"International journal of molecular epidemiology and genetics","volume":"15 2","pages":"12-21"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular epidemiology and genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/EJQK3362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
University campus communities consist of dynamic and diverse human populations originated from different regions of the country or the world. Their national/global movement to and from campus may contribute to the spread and buildup of methicillin-resistant (MR) bacteria, including MR Staphylococci (MRS) on high-touch surfaces, sinks, and toilets. However, studies on MR bacteria contamination of surfaces, sinks, and toilets are scarce in workplaces outside of healthcare settings. Hence, little is known whether university communities contaminate campus bathrooms by MR bacteria. This study evaluated the abundance, identity, and phylogenetics of MR bacteria grown on CHROMagar MRSA media from bathrooms at workplaces. We collected 21 sink and 21 toilet swab samples from 10 buildings on campus and cultured them on CHROMagar MRSA media, extracted DNA from MR bacteria colonies, sequenced PCR products of 16S and dnaJ primers, determined the sequence identities by BLAST search, and constructed a phylogenetic tree. Of 42 samples, 57.1% (24/42) harbored MR bacteria. MR bacteria were more prevalent on the sink (61.9%) than in the toilet (52.2%) and in male bathrooms (54.2%) than in female bathrooms (41.7%). The colony count on the bathroom surfaces of 42 samples varied in that 42.9% (18/42), 33.3, 14.3, and 9.5% of samples harbored 0, 100, and > 1000 MR bacteria colonies, respectively. Of MR bacteria sequenced, BLAST search and phylogenetic analysis showed that Staphylococcus accounted for 60% of the MR bacteria and the rest were non-Staphylococci. Of Staphylococcus carrying MR (n = 15), 53.3% were S. hemolyticus followed by S. lugdunensis (26.7%), S. epidermidis (8%), and a newly discovered S. borealis in 2020 (4%). Of non-Staphylococci MR bacteria, 20% accounted for Sphingomonas koreensis. Campus bathrooms serve as a reservoir for diverse bacteria carrying MR, which pose a direct risk of infection and a potential source of horizontal gene transfer. To reduce the health risk posed by MR bacteria in high traffic areas such as bathrooms additional environmental monitoring and improved decontamination practices are needed.