{"title":"Negative feedback systems for modelling NF-κB transcription factor oscillatory activity.","authors":"Bonawentura Kochel","doi":"10.1080/21541264.2024.2331887","DOIUrl":null,"url":null,"abstract":"<p><p>Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3<sup>rd</sup>- and 4<sup>th</sup>-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, <i>rela</i><sup>-/-</sup> embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcription-Austin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541264.2024.2331887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3rd- and 4th-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, rela-/- embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.