Pub Date : 2025-02-14DOI: 10.1080/21541264.2025.2460249
Joaquin M Espinosa
{"title":"Harnessing transcription factors for therapeutic purposes.","authors":"Joaquin M Espinosa","doi":"10.1080/21541264.2025.2460249","DOIUrl":"https://doi.org/10.1080/21541264.2025.2460249","url":null,"abstract":"","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"1-2"},"PeriodicalIF":3.6,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1080/21541264.2025.2453315
Rama Edaibis, Raneem Akel, Jumi A Shin
Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance. Recent advances in protein engineering offer promising alternatives by creating protein-based drugs that directly disrupt the MYC/MAX dimerization interface and/or MYC/MAX's binding to specific DNA targets. Designed DNA binding proteins like Omomyc, DuoMyc, ME47, MEF, and Mad inhibit MYC activity through specific dimerization, sequestration, and DNA-binding mechanisms. Compared to small molecules, these engineered proteins can offer superior specificity and efficacy and provide a potential pathway for overcoming the limitations of traditional cancer therapies. The success of these protein therapeutics highlights the importance of protein engineering in developing cancer treatments.
{"title":"Beyond small molecules: advancing MYC-targeted cancer therapies through protein engineering.","authors":"Rama Edaibis, Raneem Akel, Jumi A Shin","doi":"10.1080/21541264.2025.2453315","DOIUrl":"https://doi.org/10.1080/21541264.2025.2453315","url":null,"abstract":"<p><p>Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance. Recent advances in protein engineering offer promising alternatives by creating protein-based drugs that directly disrupt the MYC/MAX dimerization interface and/or MYC/MAX's binding to specific DNA targets. Designed DNA binding proteins like Omomyc, DuoMyc, ME47, MEF, and Mad inhibit MYC activity through specific dimerization, sequestration, and DNA-binding mechanisms. Compared to small molecules, these engineered proteins can offer superior specificity and efficacy and provide a potential pathway for overcoming the limitations of traditional cancer therapies. The success of these protein therapeutics highlights the importance of protein engineering in developing cancer treatments.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"1-19"},"PeriodicalIF":3.6,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1080/21541264.2024.2417475
Alexander McDermott, Ali Tavassoli
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
{"title":"Hypoxia-inducible transcription factors: architects of tumorigenesis and targets for anticancer drug discovery.","authors":"Alexander McDermott, Ali Tavassoli","doi":"10.1080/21541264.2024.2417475","DOIUrl":"10.1080/21541264.2024.2417475","url":null,"abstract":"<p><p>Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"1-32"},"PeriodicalIF":3.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-09DOI: 10.1080/21541264.2024.2350162
Alana E Belkevich, Andrew Y Khalil, Wayne A Decatur, Ryan J Palumbo, Bruce A Knutson
Genome compaction is a common evolutionary feature of parasites. The unicellular, obligate intracellular parasite Encephalitozoon cuniculi has one of smallest known eukaryotic genomes, and is nearly four times smaller than its distant fungi relative, the budding yeast Saccharomyces cerevisiae. Comparison of the proteins encoded by compacted genomes to those encoded by larger genomes can reveal the most highly conserved features of the encoded proteins. In this study, we identified the proteins comprising the RNA polymerases and their corresponding general transcription factors by using several bioinformatic approaches to compare the transcription machinery of E. cuniculi and S. cerevisiae. Surprisingly, our analyses revealed an overall reduction in the size of the proteins comprising transcription machinery of E. cuniculi, which includes the loss of entire regions or functional domains from proteins, as well as the loss of entire proteins and complexes. Unexpectedly, we found that the E. cuniculi ortholog of Rpc37 (a RNA Polymerase III subunit) more closely resembles the H. sapiens ortholog of Rpc37 than the S. cerevisiae ortholog of Rpc37, in both size and structure. Overall, our findings provide new insight into the minimal core eukaryotic transcription machinery and help define the most critical features of Pol components and general transcription factors.
基因组压缩是寄生虫常见的进化特征。单细胞、强制性胞内寄生虫阴沟脑虫的基因组是已知最小的真核生物基因组之一,比它的远亲真菌--芽殖酵母小近四倍。将紧凑基因组编码的蛋白质与较大基因组编码的蛋白质进行比较,可以发现编码蛋白质中最高度保守的特征。在本研究中,我们通过使用多种生物信息学方法来比较阴沟肠杆菌和酿酒酵母菌的转录机制,从而确定了由 RNA 聚合酶及其相应的一般转录因子组成的蛋白质。令人惊讶的是,我们的分析表明,组成阴沟肠杆菌转录机制的蛋白质的体积整体缩小,其中包括蛋白质整个区域或功能域的消失,以及整个蛋白质和复合物的消失。意外的是,我们发现阴沟肠杆菌 Rpc37 的直向同源物(RNA 聚合酶 III 亚基)在大小和结构上都比 S. cerevisiae 的 Rpc37 直向同源物更接近 H. sapiens 的 Rpc37 直向同源物。总之,我们的发现为了解真核生物最小核心转录机制提供了新的视角,并有助于确定 Pol 成分和一般转录因子的最关键特征。
{"title":"Minimization and complete loss of general transcription factor proteins in the intracellular parasite <i>Encephalitozoon cuniculi</i>.","authors":"Alana E Belkevich, Andrew Y Khalil, Wayne A Decatur, Ryan J Palumbo, Bruce A Knutson","doi":"10.1080/21541264.2024.2350162","DOIUrl":"10.1080/21541264.2024.2350162","url":null,"abstract":"<p><p>Genome compaction is a common evolutionary feature of parasites. The unicellular, obligate intracellular parasite <i>Encephalitozoon cuniculi</i> has one of smallest known eukaryotic genomes, and is nearly four times smaller than its distant fungi relative, the budding yeast <i>Saccharomyces cerevisiae</i>. Comparison of the proteins encoded by compacted genomes to those encoded by larger genomes can reveal the most highly conserved features of the encoded proteins. In this study, we identified the proteins comprising the RNA polymerases and their corresponding general transcription factors by using several bioinformatic approaches to compare the transcription machinery of <i>E. cuniculi</i> and <i>S. cerevisiae</i>. Surprisingly, our analyses revealed an overall reduction in the size of the proteins comprising transcription machinery of <i>E. cuniculi</i>, which includes the loss of entire regions or functional domains from proteins, as well as the loss of entire proteins and complexes. Unexpectedly, we found that the <i>E. cuniculi</i> ortholog of Rpc37 (a RNA Polymerase III subunit) more closely resembles the <i>H. sapiens</i> ortholog of Rpc37 than the <i>S. cerevisiae</i> ortholog of Rpc37, in both size and structure. Overall, our findings provide new insight into the minimal core eukaryotic transcription machinery and help define the most critical features of Pol components and general transcription factors.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"97-113"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-13DOI: 10.1080/21541264.2024.2331887
Bonawentura Kochel
Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3rd- and 4th-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, rela-/- embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.
{"title":"Negative feedback systems for modelling NF-κB transcription factor oscillatory activity.","authors":"Bonawentura Kochel","doi":"10.1080/21541264.2024.2331887","DOIUrl":"10.1080/21541264.2024.2331887","url":null,"abstract":"<p><p>Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3<sup>rd</sup>- and 4<sup>th</sup>-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, <i>rela</i><sup>-/-</sup> embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"65-96"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-07-20DOI: 10.1080/21541264.2024.2379161
Yumi Minyi Yao, Irina Miodownik, Michael P O'Hagan, Muhammad Jbara, Ariel Afek
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
转录因子(TFs)复杂地穿梭于庞大的基因组中,定位并结合特定的 DNA 序列,以调节基因表达程序。这些相互作用发生在动态的细胞环境中,在这种环境中,DNA 和转录因子蛋白不断经历化学和结构扰动,包括表观遗传修饰、DNA 损伤、机械应力和翻译后修饰 (PTM)。虽然这些因素中有很多都会影响 TF-DNA 结合的相互作用,但了解它们的影响仍然具有挑战性且不全面。本综述探讨了有关这些动态变化及其对 TF-DNA 相互作用的潜在影响的现有文献。
{"title":"Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome.","authors":"Yumi Minyi Yao, Irina Miodownik, Michael P O'Hagan, Muhammad Jbara, Ariel Afek","doi":"10.1080/21541264.2024.2379161","DOIUrl":"10.1080/21541264.2024.2379161","url":null,"abstract":"<p><p>Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"114-138"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-09-03DOI: 10.1080/21541264.2024.2387895
Markéta Šoltysová, Pavlína Řezáčová
The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.
SorC 家族是一大类细菌转录调节因子,参与控制碳水化合物分解代谢和法定人数感应。SorC 蛋白由一个保守的 C 端效应结合域和一个 N 端 DNA 结合域组成,其类型将该家族分为两个亚家族:SorC/DeoR 和 SorC/CggR。众所周知,SorC/CggR 亚家族的蛋白质能调节糖酵解的关键节点--磷酸三糖的相互转化。另一方面,SorC/DeoR 蛋白参与各种外围碳水化合物分解途径和法定人数感应功能,包括毒力。尽管SorC蛋白家族的数量众多且十分重要,但它似乎仍处于科学兴趣的边缘,这可能是由于有关其代表蛋白的信息较为零散造成的。本综述旨在梳理现有的知识,并提供材料以启发未来有关 SorC 蛋白家族的问题。
{"title":"Structure and function of bacterial transcription regulators of the SorC family.","authors":"Markéta Šoltysová, Pavlína Řezáčová","doi":"10.1080/21541264.2024.2387895","DOIUrl":"10.1080/21541264.2024.2387895","url":null,"abstract":"<p><p>The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"139-160"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-10-01DOI: 10.1080/21541264.2024.2406717
Kamal Ajit, Monika Gullerova
Genotoxic stress resulting from DNA damage is resolved through a signaling cascade known as the DNA Damage Response (DDR). The repair of damaged DNA is essential for cell survival, often requiring the DDR to attenuate other cellular processes such as the cell cycle, DNA replication, and transcription of genes not involved in DDR. The complex relationship between DDR and transcription has only recently been investigated. Transcription can facilitate the DDR in response to double-strand breaks (DSBs) and stimulate nucleotide excision repair (NER). However, transcription may need to be reduced to prevent potential interference with the repair machinery. In this review, we discuss various mechanisms that regulate transcription repression in response to different types of DNA damage, categorizing them by their range and duration of effect. Finally, we explore various models of transcription recovery following DNA damage-induced repression.
DNA 损伤导致的基因毒性应激可通过一种称为 DNA 损伤反应(DDR)的信号级联来解决。受损 DNA 的修复对细胞存活至关重要,通常需要 DDR 来减弱其他细胞过程,如细胞周期、DNA 复制和不参与 DDR 的基因转录。DDR 与转录之间的复杂关系直到最近才得到研究。转录可以促进 DDR 对双链断裂(DSB)做出反应,并刺激核苷酸切除修复(NER)。然而,转录可能需要减少,以防止对修复机制的潜在干扰。在这篇综述中,我们讨论了针对不同类型 DNA 损伤的转录抑制的各种调控机制,并根据其作用范围和持续时间进行了分类。最后,我们探讨了 DNA 损伤诱导抑制后转录恢复的各种模型。
{"title":"From silence to symphony: transcriptional repression and recovery in response to DNA damage.","authors":"Kamal Ajit, Monika Gullerova","doi":"10.1080/21541264.2024.2406717","DOIUrl":"10.1080/21541264.2024.2406717","url":null,"abstract":"<p><p>Genotoxic stress resulting from DNA damage is resolved through a signaling cascade known as the DNA Damage Response (DDR). The repair of damaged DNA is essential for cell survival, often requiring the DDR to attenuate other cellular processes such as the cell cycle, DNA replication, and transcription of genes not involved in DDR. The complex relationship between DDR and transcription has only recently been investigated. Transcription can facilitate the DDR in response to double-strand breaks (DSBs) and stimulate nucleotide excision repair (NER). However, transcription may need to be reduced to prevent potential interference with the repair machinery. In this review, we discuss various mechanisms that regulate transcription repression in response to different types of DNA damage, categorizing them by their range and duration of effect. Finally, we explore various models of transcription recovery following DNA damage-induced repression.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"161-175"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-28DOI: 10.1080/21541264.2024.2334106
Jiřina Procházková, Zuzana Kahounová, Jan Vondráček, Karel Souček
Aryl hydrocarbon receptor (AhR) is a transcription factor that is primarily known as an intracellular sensor of environmental pollution. After five decades, the list of synthetic and toxic chemicals that activate AhR signaling has been extended to include a number of endogenous compounds produced by various types of cells via their metabolic activity. AhR signaling is active from the very beginning of embryonal development throughout the life cycle and participates in numerous biological processes such as control of cell proliferation and differentiation, metabolism of aromatic compounds of endogenous and exogenous origin, tissue regeneration and stratification, immune system development and polarization, control of stemness potential, and homeostasis maintenance. AhR signaling can be affected by various pharmaceuticals that may help modulate abnormal AhR signaling and drive pathological states. Given their role in immune system development and regulation, AhR antagonistic ligands are attractive candidates for immunotherapy of disease states such as advanced prostate cancer, where an aberrant immune microenvironment contributes to cancer progression and needs to be reeducated. Advanced stages of prostate cancer are therapeutically challenging and characterized by decreased overall survival (OS) due to the metastatic burden. Therefore, this review addresses the role of AhR signaling in the development and progression of prostate cancer and discusses the potential of AhR as a drug target for the treatment of advanced prostate cancer upon entering the phase of drug resistance and failure of first-line androgen deprivation therapy.Abbreviation: ADC: antibody-drug conjugate; ADT: androgen deprivation therapy; AhR: aryl hydrocarbon receptor; AR: androgen receptor; ARE: androgen response element; ARPI: androgen receptor pathway inhibitor; mCRPC: metastatic castration-resistant prostate cancer; DHT: 5a-dihydrotestosterone; FICZ: 6-formylindolo[3,2-b]carbazole; 3-MC: 3-methylcholanthrene; 6-MCDF: 6-methyl-1,3,8-trichlorodibenzofuran; MDSCs: myeloid-derived suppressor cells; PAHs: polycyclic aromatic hydrocarbons; PCa: prostate cancer; TAMs: tumor-associated macrophages; TF: transcription factor; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TME: tumor microenvironment; TRAMP: transgenic adenocarcinoma of the mouse prostate; TROP2: tumor associated calcium signal transducer 2.
{"title":"Aryl hydrocarbon receptor as a drug target in advanced prostate cancer therapy - obstacles and perspectives.","authors":"Jiřina Procházková, Zuzana Kahounová, Jan Vondráček, Karel Souček","doi":"10.1080/21541264.2024.2334106","DOIUrl":"https://doi.org/10.1080/21541264.2024.2334106","url":null,"abstract":"<p><p>Aryl hydrocarbon receptor (AhR) is a transcription factor that is primarily known as an intracellular sensor of environmental pollution. After five decades, the list of synthetic and toxic chemicals that activate AhR signaling has been extended to include a number of endogenous compounds produced by various types of cells via their metabolic activity. AhR signaling is active from the very beginning of embryonal development throughout the life cycle and participates in numerous biological processes such as control of cell proliferation and differentiation, metabolism of aromatic compounds of endogenous and exogenous origin, tissue regeneration and stratification, immune system development and polarization, control of stemness potential, and homeostasis maintenance. AhR signaling can be affected by various pharmaceuticals that may help modulate abnormal AhR signaling and drive pathological states. Given their role in immune system development and regulation, AhR antagonistic ligands are attractive candidates for immunotherapy of disease states such as advanced prostate cancer, where an aberrant immune microenvironment contributes to cancer progression and needs to be reeducated. Advanced stages of prostate cancer are therapeutically challenging and characterized by decreased overall survival (OS) due to the metastatic burden. Therefore, this review addresses the role of AhR signaling in the development and progression of prostate cancer and discusses the potential of AhR as a drug target for the treatment of advanced prostate cancer upon entering the phase of drug resistance and failure of first-line androgen deprivation therapy.<b>Abbreviation</b>: ADC: antibody-drug conjugate; ADT: androgen deprivation therapy; AhR: aryl hydrocarbon receptor; AR: androgen receptor; ARE: androgen response element; ARPI: androgen receptor pathway inhibitor; mCRPC: metastatic castration-resistant prostate cancer; DHT: 5a-dihydrotestosterone; FICZ: 6-formylindolo[3,2-b]carbazole; 3-MC: 3-methylcholanthrene; 6-MCDF: 6-methyl-1,3,8-trichlorodibenzofuran; MDSCs: myeloid-derived suppressor cells; PAHs: polycyclic aromatic hydrocarbons; PCa: prostate cancer; TAMs: tumor-associated macrophages; TF: transcription factor; TCDD, 2,3,7,8-tetrachlorodibenzo-<i>p</i>-dioxin; TME: tumor microenvironment; TRAMP: transgenic adenocarcinoma of the mouse prostate; TROP2: tumor associated calcium signal transducer 2.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"1-20"},"PeriodicalIF":3.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-02-15DOI: 10.1080/21541264.2024.2316972
Ling Wang
RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious "traffic jams". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.
{"title":"RNA polymerase collisions and their role in transcription.","authors":"Ling Wang","doi":"10.1080/21541264.2024.2316972","DOIUrl":"10.1080/21541264.2024.2316972","url":null,"abstract":"<p><p>RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious \"traffic jams\". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"38-47"},"PeriodicalIF":3.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}