Rules and impacts of nonsense-mediated mRNA decay in the degradation of long noncoding RNAs.

IF 6.4 2区 生物学 Q1 CELL BIOLOGY Wiley Interdisciplinary Reviews: RNA Pub Date : 2024-05-01 DOI:10.1002/wrna.1853
Anand Kumar Singh
{"title":"Rules and impacts of nonsense-mediated mRNA decay in the degradation of long noncoding RNAs.","authors":"Anand Kumar Singh","doi":"10.1002/wrna.1853","DOIUrl":null,"url":null,"abstract":"<p><p>Nonsense-mediated mRNA decay (NMD) is a quality-control process that selectively degrades mRNAs having premature termination codon, upstream open reading frame, or unusually long 3'UTR. NMD detects such mRNAs and rapidly degrades them during initial rounds of translation in the eukaryotic cells. Since NMD is a translation-dependent cytoplasmic mRNA surveillance process, the noncoding RNAs were initially believed to be NMD-resistant. The sequence feature-based analysis has revealed that many putative long noncoding RNAs (lncRNAs) have short open reading frames, most of which have translation potential. Subsequent transcriptome-based molecular studies showed an association of a large set of such putative lncRNAs with translating ribosomes, and some of them produce stable and functionally active micropeptides. The translationally active lncRNAs typically have relatively longer and unprotected 3'UTR, which can induce their NMD-dependent degradation. This review defines the mechanism and regulation of NMD-dependent degradation of lncRNAs and its impact on biological processes related to the functions of lncRNAs or their encoded micropeptides. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"15 3","pages":"e1853"},"PeriodicalIF":6.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.1853","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonsense-mediated mRNA decay (NMD) is a quality-control process that selectively degrades mRNAs having premature termination codon, upstream open reading frame, or unusually long 3'UTR. NMD detects such mRNAs and rapidly degrades them during initial rounds of translation in the eukaryotic cells. Since NMD is a translation-dependent cytoplasmic mRNA surveillance process, the noncoding RNAs were initially believed to be NMD-resistant. The sequence feature-based analysis has revealed that many putative long noncoding RNAs (lncRNAs) have short open reading frames, most of which have translation potential. Subsequent transcriptome-based molecular studies showed an association of a large set of such putative lncRNAs with translating ribosomes, and some of them produce stable and functionally active micropeptides. The translationally active lncRNAs typically have relatively longer and unprotected 3'UTR, which can induce their NMD-dependent degradation. This review defines the mechanism and regulation of NMD-dependent degradation of lncRNAs and its impact on biological processes related to the functions of lncRNAs or their encoded micropeptides. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无义介导的 mRNA 衰减在长非编码 RNA 降解中的规则和影响。
无义介导的 mRNA 降解(NMD)是一种质量控制过程,可选择性地降解具有过早终止密码子、上游开放阅读框或异常长的 3'UTR 的 mRNA。NMD 能检测到这类 mRNA,并在真核细胞的最初几轮翻译过程中迅速降解它们。由于 NMD 是一种依赖于翻译的细胞质 mRNA 监控过程,人们最初认为非编码 RNA 具有 NMD 抗性。基于序列特征的分析表明,许多推定的长非编码 RNA(lncRNA)具有短开放阅读框,其中大部分具有翻译潜力。随后进行的基于转录组的分子研究显示,大量此类推测的 lncRNA 与翻译核糖体有关联,其中一些会产生稳定且功能活跃的微肽。具有翻译活性的 lncRNA 通常具有相对较长和不受保护的 3'UTR,这可能会诱导其 NMD 依赖性降解。这篇综述阐述了 NMD 依赖性降解 lncRNAs 的机制和调控及其对与 lncRNAs 或其编码的微肽功能相关的生物过程的影响。本文归类于RNA 转录和监控 > 转录/监控机制 RNA 转录和监控 > RNA 稳定性的调控 RNA 在疾病和发育中的作用 > RNA 在疾病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
期刊最新文献
Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1