Biarchetype Analysis: Simultaneous Learning of Observations and Features Based on Extremes.

Aleix Alcacer, Irene Epifanio, Ximo Gual-Arnau
{"title":"Biarchetype Analysis: Simultaneous Learning of Observations and Features Based on Extremes.","authors":"Aleix Alcacer, Irene Epifanio, Ximo Gual-Arnau","doi":"10.1109/TPAMI.2024.3400730","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a novel exploratory technique, termed biarchetype analysis, which extends archetype analysis to simultaneously identify archetypes of both observations and features. This innovative unsupervised machine learning tool aims to represent observations and features through instances of pure types, or biarchetypes, which are easily interpretable as they embody mixtures of observations and features. Furthermore, the observations and features are expressed as mixtures of the biarchetypes, which makes the structure of the data easier to understand. We propose an algorithm to solve biarchetype analysis. Although clustering is not the primary aim of this technique, biarchetype analysis is demonstrated to offer significant advantages over biclustering methods, particularly in terms of interpretability. This is attributed to biarchetypes being extreme instances, in contrast to the centroids produced by biclustering, which inherently enhances human comprehension. The application of biarchetype analysis across various machine learning challenges underscores its value.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3400730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel exploratory technique, termed biarchetype analysis, which extends archetype analysis to simultaneously identify archetypes of both observations and features. This innovative unsupervised machine learning tool aims to represent observations and features through instances of pure types, or biarchetypes, which are easily interpretable as they embody mixtures of observations and features. Furthermore, the observations and features are expressed as mixtures of the biarchetypes, which makes the structure of the data easier to understand. We propose an algorithm to solve biarchetype analysis. Although clustering is not the primary aim of this technique, biarchetype analysis is demonstrated to offer significant advantages over biclustering methods, particularly in terms of interpretability. This is attributed to biarchetypes being extreme instances, in contrast to the centroids produced by biclustering, which inherently enhances human comprehension. The application of biarchetype analysis across various machine learning challenges underscores its value.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双车型分析:基于极值同时学习观察结果和特征
我们介绍了一种新颖的探索性技术,称为双原型分析,它扩展了原型分析,可同时识别观察结果和特征的原型。这种创新的无监督机器学习工具旨在通过纯类型或生物原型的实例来表示观察结果和特征,由于生物原型体现了观察结果和特征的混合物,因此易于解释。此外,观察结果和特征被表示为生物类型的混合物,这使得数据结构更容易理解。我们提出了一种解决生物类型分析的算法。虽然聚类不是这项技术的主要目的,但事实证明,与双聚类方法相比,生物原型分析具有显著优势,尤其是在可解释性方面。这要归功于生物类型是极端实例,与双聚类产生的中心点形成对比,从本质上增强了人类的理解能力。生物类型分析在各种机器学习挑战中的应用彰显了它的价值,源代码和示例都可以在 https://github.com/aleixalcacer/JA-BIAA 上以 R 和 Python 的形式访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EBMGC-GNF: Efficient Balanced Multi-View Graph Clustering via Good Neighbor Fusion. Integrating Neural-Symbolic Reasoning With Variational Causal Inference Network for Explanatory Visual Question Answering. Motion-Aware Dynamic Graph Neural Network for Video Compressive Sensing. Evaluation Metrics for Intelligent Generation of Graphical Game Assets: A Systematic Survey-Based Framework. Artificial Intelligence and Machine Learning Tools for Improving Early Warning Systems of Volcanic Eruptions: The Case of Stromboli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1