Xueyun Xuan , Shiying Su , Jiaqi Tan, Hui Guo, Yang Jiao, Zhijun Zhang
{"title":"Genome-wide identification, characterization, and expression pattern analysis of the JAZ gene family in Moso bamboo during rapid shoot development","authors":"Xueyun Xuan , Shiying Su , Jiaqi Tan, Hui Guo, Yang Jiao, Zhijun Zhang","doi":"10.1016/j.bamboo.2024.100083","DOIUrl":null,"url":null,"abstract":"<div><p>Moso bamboo (<em>Phyllostachys heterocycla</em> (Carriere) Matsum.), a member of the bamboo subfamily within the Gramineae family, is a globally significant economic forest resource, notable for its swift growth. JAZ proteins, crucial in the jasmonic acid signaling pathway, play essential roles in plant growth, development, and responses to various biotic and abiotic stresses. This study identifies 22 <em>JAZ</em> genes in moso bamboo using bioinformatics. We conducted a comprehensive analysis of their physicochemical properties, gene structure, chromosomal localization, conserved structural domains and motifs, cis-acting regulatory elements, and evolutionary relationships. Furthermore, by mining transcriptome data, we delineated the expression patterns of the JAZ gene family during the rapid shoot development phase in moso bamboo. This analysis suggests a significant role for the <em>JAZ</em> genes in the growth and development of moso bamboo. Additionally, we predicted transcription factors that regulate <em>JAZ</em> and analyzed protein interactions to construct an initial <em>JAZ</em>-related regulatory network. This study provides a crucial foundation for understanding the functions of the JAZ gene family and elucidating the molecular mechanisms underpinning the rapid shoot development in moso bamboo.</p></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"7 ","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773139124000284/pdfft?md5=cfbe604a128690194163d53dfea76197&pid=1-s2.0-S2773139124000284-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139124000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Moso bamboo (Phyllostachys heterocycla (Carriere) Matsum.), a member of the bamboo subfamily within the Gramineae family, is a globally significant economic forest resource, notable for its swift growth. JAZ proteins, crucial in the jasmonic acid signaling pathway, play essential roles in plant growth, development, and responses to various biotic and abiotic stresses. This study identifies 22 JAZ genes in moso bamboo using bioinformatics. We conducted a comprehensive analysis of their physicochemical properties, gene structure, chromosomal localization, conserved structural domains and motifs, cis-acting regulatory elements, and evolutionary relationships. Furthermore, by mining transcriptome data, we delineated the expression patterns of the JAZ gene family during the rapid shoot development phase in moso bamboo. This analysis suggests a significant role for the JAZ genes in the growth and development of moso bamboo. Additionally, we predicted transcription factors that regulate JAZ and analyzed protein interactions to construct an initial JAZ-related regulatory network. This study provides a crucial foundation for understanding the functions of the JAZ gene family and elucidating the molecular mechanisms underpinning the rapid shoot development in moso bamboo.