Transdisciplinary fine-grained citation content analysis: A multi-task learning perspective for citation aspect and sentiment classification

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-13 DOI:10.1016/j.joi.2024.101542
Ling Kong , Wei Zhang , Haotian Hu , Zhu Liang , Yonggang Han , Dongbo Wang , Min Song
{"title":"Transdisciplinary fine-grained citation content analysis: A multi-task learning perspective for citation aspect and sentiment classification","authors":"Ling Kong ,&nbsp;Wei Zhang ,&nbsp;Haotian Hu ,&nbsp;Zhu Liang ,&nbsp;Yonggang Han ,&nbsp;Dongbo Wang ,&nbsp;Min Song","doi":"10.1016/j.joi.2024.101542","DOIUrl":null,"url":null,"abstract":"<div><p>The diffusion of citation knowledge is an important measure of transdisciplinary scientific impact and the diversity of transdisciplinary citation content (sentences). Moreover, combining citation sentiment (CS) and citation aspect (CA) can help researchers identify the attitudes, ideas, or positions reflected in the evolution of scientific elements (e.g., theories, techniques, and methods). This is because of their use by scholars from different disciplines, paving the way toward transdisciplinary penetration and the development of domain knowledge through the proliferation of cited knowledge. However, most studies mainly address citation aspect classification (CAC) and citation sentiment classification (CSC) separately, ignoring their shared features of interactions. In this study, we construct a dataset for transdisciplinary citation content analysis using citations and academic full texts from the Chinese Social Sciences Citation Index (CSSCI), which includes 14,832 manually-annotated citations. Thereafter, we utilized the developed dataset to conduct a transdisciplinary fine-grained citation content analysis by combining CAC and CSC. The objective of the CAC task was to classify transdisciplinary citations into theoretical concepts (TC), methodological techniques (MT), and data information (DI), whereas the CSC task classified citations into positive, negative, and neutral classes. Furthermore, we leveraged a multi-task learning (MTL) model to perform CAC and CSC jointly and then compared its performance to those of several widely-used deep learning models. Our model achieved 83.10 % accuracy for CAC and 80.46 % accuracy for CSC, demonstrating its superiority to single-task systems. This indicates the strong correlation between the CAC and CSC of transdisciplinary citation tasks, benefiting from each other when learned concurrently. This new method can be used as an auxiliary decision support system to extend the analysis of transdisciplinary citation content.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000555","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The diffusion of citation knowledge is an important measure of transdisciplinary scientific impact and the diversity of transdisciplinary citation content (sentences). Moreover, combining citation sentiment (CS) and citation aspect (CA) can help researchers identify the attitudes, ideas, or positions reflected in the evolution of scientific elements (e.g., theories, techniques, and methods). This is because of their use by scholars from different disciplines, paving the way toward transdisciplinary penetration and the development of domain knowledge through the proliferation of cited knowledge. However, most studies mainly address citation aspect classification (CAC) and citation sentiment classification (CSC) separately, ignoring their shared features of interactions. In this study, we construct a dataset for transdisciplinary citation content analysis using citations and academic full texts from the Chinese Social Sciences Citation Index (CSSCI), which includes 14,832 manually-annotated citations. Thereafter, we utilized the developed dataset to conduct a transdisciplinary fine-grained citation content analysis by combining CAC and CSC. The objective of the CAC task was to classify transdisciplinary citations into theoretical concepts (TC), methodological techniques (MT), and data information (DI), whereas the CSC task classified citations into positive, negative, and neutral classes. Furthermore, we leveraged a multi-task learning (MTL) model to perform CAC and CSC jointly and then compared its performance to those of several widely-used deep learning models. Our model achieved 83.10 % accuracy for CAC and 80.46 % accuracy for CSC, demonstrating its superiority to single-task systems. This indicates the strong correlation between the CAC and CSC of transdisciplinary citation tasks, benefiting from each other when learned concurrently. This new method can be used as an auxiliary decision support system to extend the analysis of transdisciplinary citation content.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨学科细粒度引文内容分析:多任务学习视角下的引文方面和情感分类
引文知识的传播是衡量跨学科科学影响和跨学科引文内容(句子)多样性的重要指标。此外,将引文情感(CS)和引文方面(CA)结合起来,可以帮助研究人员识别科学要素(如理论、技术和方法)演变过程中所反映的态度、观点或立场。这是因为它们被不同学科的学者所使用,通过被引知识的扩散为跨学科渗透和领域知识的发展铺平了道路。然而,大多数研究主要是将引文方面分类(CAC)和引文情感分类(CSC)分开处理,忽略了它们之间交互作用的共同特征。在本研究中,我们利用《中文社会科学引文索引》(CSSCI)中的引文和学术全文构建了一个用于跨学科引文内容分析的数据集,其中包括 14832 条人工标注的引文。之后,我们利用所开发的数据集,结合 CAC 和 CSC 进行了跨学科细粒度引文内容分析。CAC 任务的目标是将跨学科引文分为理论概念类(TC)、方法技术类(MT)和数据信息类(DI),而 CSC 任务则将引文分为正面、负面和中性类。此外,我们还利用多任务学习(MTL)模型来联合执行 CAC 和 CSC,并将其性能与几种广泛使用的深度学习模型进行了比较。我们的模型在 CAC 方面达到了 83.10% 的准确率,在 CSC 方面达到了 80.46% 的准确率,这表明它优于单任务系统。这表明跨学科引文任务的 CAC 和 CSC 之间具有很强的相关性,在同时学习时可以相互受益。这种新方法可用作辅助决策支持系统,扩展跨学科引文内容分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1