Sequential citation counts prediction enhanced by dynamic contents

IF 3.4 2区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Informetrics Pub Date : 2025-02-13 DOI:10.1016/j.joi.2025.101645
Guoxiu He , Sichen Gu , Zhikai Xue , Yufeng Duan , Xiaomin Zhu
{"title":"Sequential citation counts prediction enhanced by dynamic contents","authors":"Guoxiu He ,&nbsp;Sichen Gu ,&nbsp;Zhikai Xue ,&nbsp;Yufeng Duan ,&nbsp;Xiaomin Zhu","doi":"10.1016/j.joi.2025.101645","DOIUrl":null,"url":null,"abstract":"<div><div>The assessment of the impact of scholarly publications has garnered significant attention among researchers, particularly in predicting the future sequence of citation counts. However, current studies predominantly regard academic papers as static entities, failing to acknowledge the dynamic nature of their fixed content, which can undergo shifts in focus over time. To this end, we implement dynamic representations of the content to mirror chronological changes within the given paper, facilitating the sequential prediction of citation counts. Specifically, we propose a novel deep neural network called <strong>D</strong>ynam<strong>I</strong>c <strong>C</strong>ontent-aware <strong>T</strong>r<strong>A</strong>nsformer (DICTA). The proposed model incorporates a dynamic content module that leverages the power of a sequential module to effectively capture the evolving focus information within each paper. To account for dependencies between the historical and future citation counts, our model utilizes a transformer-based framework as the backbone. With the encoder-decoder structure, it can effectively handle previous citation accumulations and then predict future citation potentials. Extensive experiments conducted on two scientific datasets demonstrate that DICTA achieves impressive performance and outperforms all baseline approaches. Further analyses underscore the significance of the dynamic content module. The code is available: <span><span>https://github.com/ECNU-Text-Computing/DICTA</span><svg><path></path></svg></span></div></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"19 2","pages":"Article 101645"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157725000094","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment of the impact of scholarly publications has garnered significant attention among researchers, particularly in predicting the future sequence of citation counts. However, current studies predominantly regard academic papers as static entities, failing to acknowledge the dynamic nature of their fixed content, which can undergo shifts in focus over time. To this end, we implement dynamic representations of the content to mirror chronological changes within the given paper, facilitating the sequential prediction of citation counts. Specifically, we propose a novel deep neural network called DynamIc Content-aware TrAnsformer (DICTA). The proposed model incorporates a dynamic content module that leverages the power of a sequential module to effectively capture the evolving focus information within each paper. To account for dependencies between the historical and future citation counts, our model utilizes a transformer-based framework as the backbone. With the encoder-decoder structure, it can effectively handle previous citation accumulations and then predict future citation potentials. Extensive experiments conducted on two scientific datasets demonstrate that DICTA achieves impressive performance and outperforms all baseline approaches. Further analyses underscore the significance of the dynamic content module. The code is available: https://github.com/ECNU-Text-Computing/DICTA
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Informetrics
Journal of Informetrics Social Sciences-Library and Information Sciences
CiteScore
6.40
自引率
16.20%
发文量
95
期刊介绍: Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.
期刊最新文献
Sequential citation counts prediction enhanced by dynamic contents Avoiding the pitfalls of direct linkage: A novelty-driven approach to measuring scientific impact on patents Identifying potential sleeping beauties based on dynamic time warping algorithm and citation curve benchmarking Acknowledging the new invisible colleague: Addressing the recognition of Open AI contributions in in scientific publishing Integrating persistence process into the analysis of technology convergence using STERGM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1